Loading…
Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique
We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performin...
Saved in:
Published in: | Nano futures 2020-06, Vol.4 (2), p.25003 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3 |
container_end_page | |
container_issue | 2 |
container_start_page | 25003 |
container_title | Nano futures |
container_volume | 4 |
creator | Robins, Lawrence H Brubaker, Matt D Tung, Ryan C Killgore, Jason P |
description | We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with ≈180° phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast. |
doi_str_mv | 10.1088/2399-1984/ab844f |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2399_1984_ab844f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nanofab844f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpzuiRgdDzR0zCVlVQKlWwwGw5jq26auxgp0Lll_BzSShCDBXL3en03Mf7InRJ4IZAUUwpK8uMlAWfqqrg3J6g0W_r9E99jiYpbQCAFDnkgo_Q5zKFJsR27TTWwXdKdziaFLzy2mAbYh8bp2NIOrR7rHyNW2c-Qs-0wacjSLA9hWfbJ9ytncfWbZs7XJump7uoOhf8N4K9eT9ysTN67d3bzlygM6u2yUx-8hi9Pty_zB-z1fNiOZ-tMs0I67JCcFopoFRXwmpCoahrLjQpS6tBMQolZ9ZYxWthuALBiaCaiZyqurolzLAxgsPeQUCKxso2ukbFvSQgB3Pl4J4c3JMHc_uR68OIC63chF30_YP_4VdH8F5usJJLKoHmAEy2tWVfDLOM9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Robins, Lawrence H ; Brubaker, Matt D ; Tung, Ryan C ; Killgore, Jason P</creator><creatorcontrib>Robins, Lawrence H ; Brubaker, Matt D ; Tung, Ryan C ; Killgore, Jason P</creatorcontrib><description>We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with ≈180° phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast.</description><identifier>ISSN: 2399-1984</identifier><identifier>EISSN: 2399-1984</identifier><identifier>DOI: 10.1088/2399-1984/ab844f</identifier><identifier>CODEN: NFAUB3</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atomic force microscopy ; contact resonance force microscopy ; electromechanical properties ; piezoelectric thin film ; piezoresponse force microscopy</subject><ispartof>Nano futures, 2020-06, Vol.4 (2), p.25003</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3</citedby><cites>FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3</cites><orcidid>0000-0002-8458-6680 ; 0000-0002-3818-4939 ; 0000-0002-1063-7115 ; 0000-0003-2862-6980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Robins, Lawrence H</creatorcontrib><creatorcontrib>Brubaker, Matt D</creatorcontrib><creatorcontrib>Tung, Ryan C</creatorcontrib><creatorcontrib>Killgore, Jason P</creatorcontrib><title>Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique</title><title>Nano futures</title><addtitle>NANOF</addtitle><addtitle>Nano Futures</addtitle><description>We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with ≈180° phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast.</description><subject>atomic force microscopy</subject><subject>contact resonance force microscopy</subject><subject>electromechanical properties</subject><subject>piezoelectric thin film</subject><subject>piezoresponse force microscopy</subject><issn>2399-1984</issn><issn>2399-1984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElXpzuiRgdDzR0zCVlVQKlWwwGw5jq26auxgp0Lll_BzSShCDBXL3en03Mf7InRJ4IZAUUwpK8uMlAWfqqrg3J6g0W_r9E99jiYpbQCAFDnkgo_Q5zKFJsR27TTWwXdKdziaFLzy2mAbYh8bp2NIOrR7rHyNW2c-Qs-0wacjSLA9hWfbJ9ytncfWbZs7XJump7uoOhf8N4K9eT9ysTN67d3bzlygM6u2yUx-8hi9Pty_zB-z1fNiOZ-tMs0I67JCcFopoFRXwmpCoahrLjQpS6tBMQolZ9ZYxWthuALBiaCaiZyqurolzLAxgsPeQUCKxso2ukbFvSQgB3Pl4J4c3JMHc_uR68OIC63chF30_YP_4VdH8F5usJJLKoHmAEy2tWVfDLOM9A</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Robins, Lawrence H</creator><creator>Brubaker, Matt D</creator><creator>Tung, Ryan C</creator><creator>Killgore, Jason P</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8458-6680</orcidid><orcidid>https://orcid.org/0000-0002-3818-4939</orcidid><orcidid>https://orcid.org/0000-0002-1063-7115</orcidid><orcidid>https://orcid.org/0000-0003-2862-6980</orcidid></search><sort><creationdate>20200616</creationdate><title>Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique</title><author>Robins, Lawrence H ; Brubaker, Matt D ; Tung, Ryan C ; Killgore, Jason P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>atomic force microscopy</topic><topic>contact resonance force microscopy</topic><topic>electromechanical properties</topic><topic>piezoelectric thin film</topic><topic>piezoresponse force microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robins, Lawrence H</creatorcontrib><creatorcontrib>Brubaker, Matt D</creatorcontrib><creatorcontrib>Tung, Ryan C</creatorcontrib><creatorcontrib>Killgore, Jason P</creatorcontrib><collection>CrossRef</collection><jtitle>Nano futures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robins, Lawrence H</au><au>Brubaker, Matt D</au><au>Tung, Ryan C</au><au>Killgore, Jason P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique</atitle><jtitle>Nano futures</jtitle><stitle>NANOF</stitle><addtitle>Nano Futures</addtitle><date>2020-06-16</date><risdate>2020</risdate><volume>4</volume><issue>2</issue><spage>25003</spage><pages>25003-</pages><issn>2399-1984</issn><eissn>2399-1984</eissn><coden>NFAUB3</coden><abstract>We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with ≈180° phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast.</abstract><pub>IOP Publishing</pub><doi>10.1088/2399-1984/ab844f</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8458-6680</orcidid><orcidid>https://orcid.org/0000-0002-3818-4939</orcidid><orcidid>https://orcid.org/0000-0002-1063-7115</orcidid><orcidid>https://orcid.org/0000-0003-2862-6980</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-1984 |
ispartof | Nano futures, 2020-06, Vol.4 (2), p.25003 |
issn | 2399-1984 2399-1984 |
language | eng |
recordid | cdi_iop_journals_10_1088_2399_1984_ab844f |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | atomic force microscopy contact resonance force microscopy electromechanical properties piezoelectric thin film piezoresponse force microscopy |
title | Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isomorphic%20contact%20resonance%20force%20microscopy%20and%20piezoresponse%20force%20microscopy%20of%20an%20AlN%20thin%20film:%20demonstration%20of%20a%20new%20contact%20resonance%20technique&rft.jtitle=Nano%20futures&rft.au=Robins,%20Lawrence%20H&rft.date=2020-06-16&rft.volume=4&rft.issue=2&rft.spage=25003&rft.pages=25003-&rft.issn=2399-1984&rft.eissn=2399-1984&rft.coden=NFAUB3&rft_id=info:doi/10.1088/2399-1984/ab844f&rft_dat=%3Ciop_cross%3Enanofab844f%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |