Loading…

Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique

We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performin...

Full description

Saved in:
Bibliographic Details
Published in:Nano futures 2020-06, Vol.4 (2), p.25003
Main Authors: Robins, Lawrence H, Brubaker, Matt D, Tung, Ryan C, Killgore, Jason P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3
cites cdi_FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3
container_end_page
container_issue 2
container_start_page 25003
container_title Nano futures
container_volume 4
creator Robins, Lawrence H
Brubaker, Matt D
Tung, Ryan C
Killgore, Jason P
description We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with ≈180° phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast.
doi_str_mv 10.1088/2399-1984/ab844f
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2399_1984_ab844f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nanofab844f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpzuiRgdDzR0zCVlVQKlWwwGw5jq26auxgp0Lll_BzSShCDBXL3en03Mf7InRJ4IZAUUwpK8uMlAWfqqrg3J6g0W_r9E99jiYpbQCAFDnkgo_Q5zKFJsR27TTWwXdKdziaFLzy2mAbYh8bp2NIOrR7rHyNW2c-Qs-0wacjSLA9hWfbJ9ytncfWbZs7XJump7uoOhf8N4K9eT9ysTN67d3bzlygM6u2yUx-8hi9Pty_zB-z1fNiOZ-tMs0I67JCcFopoFRXwmpCoahrLjQpS6tBMQolZ9ZYxWthuALBiaCaiZyqurolzLAxgsPeQUCKxso2ukbFvSQgB3Pl4J4c3JMHc_uR68OIC63chF30_YP_4VdH8F5usJJLKoHmAEy2tWVfDLOM9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Robins, Lawrence H ; Brubaker, Matt D ; Tung, Ryan C ; Killgore, Jason P</creator><creatorcontrib>Robins, Lawrence H ; Brubaker, Matt D ; Tung, Ryan C ; Killgore, Jason P</creatorcontrib><description>We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with ≈180° phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast.</description><identifier>ISSN: 2399-1984</identifier><identifier>EISSN: 2399-1984</identifier><identifier>DOI: 10.1088/2399-1984/ab844f</identifier><identifier>CODEN: NFAUB3</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atomic force microscopy ; contact resonance force microscopy ; electromechanical properties ; piezoelectric thin film ; piezoresponse force microscopy</subject><ispartof>Nano futures, 2020-06, Vol.4 (2), p.25003</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3</citedby><cites>FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3</cites><orcidid>0000-0002-8458-6680 ; 0000-0002-3818-4939 ; 0000-0002-1063-7115 ; 0000-0003-2862-6980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Robins, Lawrence H</creatorcontrib><creatorcontrib>Brubaker, Matt D</creatorcontrib><creatorcontrib>Tung, Ryan C</creatorcontrib><creatorcontrib>Killgore, Jason P</creatorcontrib><title>Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique</title><title>Nano futures</title><addtitle>NANOF</addtitle><addtitle>Nano Futures</addtitle><description>We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with ≈180° phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast.</description><subject>atomic force microscopy</subject><subject>contact resonance force microscopy</subject><subject>electromechanical properties</subject><subject>piezoelectric thin film</subject><subject>piezoresponse force microscopy</subject><issn>2399-1984</issn><issn>2399-1984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElXpzuiRgdDzR0zCVlVQKlWwwGw5jq26auxgp0Lll_BzSShCDBXL3en03Mf7InRJ4IZAUUwpK8uMlAWfqqrg3J6g0W_r9E99jiYpbQCAFDnkgo_Q5zKFJsR27TTWwXdKdziaFLzy2mAbYh8bp2NIOrR7rHyNW2c-Qs-0wacjSLA9hWfbJ9ytncfWbZs7XJump7uoOhf8N4K9eT9ysTN67d3bzlygM6u2yUx-8hi9Pty_zB-z1fNiOZ-tMs0I67JCcFopoFRXwmpCoahrLjQpS6tBMQolZ9ZYxWthuALBiaCaiZyqurolzLAxgsPeQUCKxso2ukbFvSQgB3Pl4J4c3JMHc_uR68OIC63chF30_YP_4VdH8F5usJJLKoHmAEy2tWVfDLOM9A</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Robins, Lawrence H</creator><creator>Brubaker, Matt D</creator><creator>Tung, Ryan C</creator><creator>Killgore, Jason P</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8458-6680</orcidid><orcidid>https://orcid.org/0000-0002-3818-4939</orcidid><orcidid>https://orcid.org/0000-0002-1063-7115</orcidid><orcidid>https://orcid.org/0000-0003-2862-6980</orcidid></search><sort><creationdate>20200616</creationdate><title>Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique</title><author>Robins, Lawrence H ; Brubaker, Matt D ; Tung, Ryan C ; Killgore, Jason P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>atomic force microscopy</topic><topic>contact resonance force microscopy</topic><topic>electromechanical properties</topic><topic>piezoelectric thin film</topic><topic>piezoresponse force microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robins, Lawrence H</creatorcontrib><creatorcontrib>Brubaker, Matt D</creatorcontrib><creatorcontrib>Tung, Ryan C</creatorcontrib><creatorcontrib>Killgore, Jason P</creatorcontrib><collection>CrossRef</collection><jtitle>Nano futures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robins, Lawrence H</au><au>Brubaker, Matt D</au><au>Tung, Ryan C</au><au>Killgore, Jason P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique</atitle><jtitle>Nano futures</jtitle><stitle>NANOF</stitle><addtitle>Nano Futures</addtitle><date>2020-06-16</date><risdate>2020</risdate><volume>4</volume><issue>2</issue><spage>25003</spage><pages>25003-</pages><issn>2399-1984</issn><eissn>2399-1984</eissn><coden>NFAUB3</coden><abstract>We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with ≈180° phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast.</abstract><pub>IOP Publishing</pub><doi>10.1088/2399-1984/ab844f</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8458-6680</orcidid><orcidid>https://orcid.org/0000-0002-3818-4939</orcidid><orcidid>https://orcid.org/0000-0002-1063-7115</orcidid><orcidid>https://orcid.org/0000-0003-2862-6980</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2399-1984
ispartof Nano futures, 2020-06, Vol.4 (2), p.25003
issn 2399-1984
2399-1984
language eng
recordid cdi_iop_journals_10_1088_2399_1984_ab844f
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects atomic force microscopy
contact resonance force microscopy
electromechanical properties
piezoelectric thin film
piezoresponse force microscopy
title Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isomorphic%20contact%20resonance%20force%20microscopy%20and%20piezoresponse%20force%20microscopy%20of%20an%20AlN%20thin%20film:%20demonstration%20of%20a%20new%20contact%20resonance%20technique&rft.jtitle=Nano%20futures&rft.au=Robins,%20Lawrence%20H&rft.date=2020-06-16&rft.volume=4&rft.issue=2&rft.spage=25003&rft.pages=25003-&rft.issn=2399-1984&rft.eissn=2399-1984&rft.coden=NFAUB3&rft_id=info:doi/10.1088/2399-1984/ab844f&rft_dat=%3Ciop_cross%3Enanofab844f%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-8642ba022cb6fc1208dd46c199fc0a320943fefa4d6e4a064162c3652adb713e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true