Loading…
Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks
Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-s...
Saved in:
Published in: | Machine learning: science and technology 2023-06, Vol.4 (2), p.25023 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283 |
container_end_page | |
container_issue | 2 |
container_start_page | 25023 |
container_title | Machine learning: science and technology |
container_volume | 4 |
creator | Pantis-Simut, Calin-Andrei Preda, Amanda Teodora Ion, Lucian Manolescu, Andrei Alexandru Nemnes, George |
description | Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-standard for few electron systems. However, by increasing the number of instances to be solved, the computational costs become prohibitive and new approaches based on machine learning techniques can provide a significant reduction in computational time and resources, maintaining a reasonable accuracy. Here, we employ
pix2pix
, a general-purpose image-to-image translation method based on conditional generative adversarial network (cGAN), for predicting ground state densities from randomly generated confinement potentials. Other mappings were also investigated, like potentials to non-interacting densities and the translation from non-interacting to interacting densities. The architecture of the cGAN was optimized with respect to the internal parameters of the generator and discriminator. Moreover, the inverse problem of finding the confinement potential given the interacting density can also be approached by the
pix2pix
mapping, which is an important step in finding near-optimal solutions for confinement potentials. |
doi_str_mv | 10.1088/2632-2153/acd6d8 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2632_2153_acd6d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_89e00bb2a5c04b1788bd173a55ba2e76</doaj_id><sourcerecordid>2819662541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283</originalsourceid><addsrcrecordid>eNp1kT1vFDEQhleISEQhfUpLFDQc8eeut0QRhEiJaJLamrVnDx-39sb2BqXPD8fHRoECqrFGz_uMrLdpzhj9yKjW57wVfMOZEudgXev0q-b4ZfX6r_eb5jTnHaWUKyYUp8fN0w3Msw9bYmMYfcAJQyFzLHV42GcCwRH7HdIWicOQffGYSRyJDwUT2HKI3i8QyjKR_JgLTpks-VnoKh4D7MkWQ6WLf0AC7gFThlTtJGD5GdOP_LY5GusxPH2eJ83dl8-3F183198ury4-XW-slLpsOkQGWrV9N7YgOwsd74VmeuCs7bWSclR0HNUguEY54ABccSed6LGnQnMtTpqr1esi7Myc_ATp0UTw5vcipq2BVLzdo9E9UjoMHJSlcmCd1oNjnQClqha7trrera45xfsFczG7uKT62Wy4Zn3bciVZpehK2RRzTji-XGXUHKozh27MoRuzVlcj79eIj_Mf57SvF6ThplZHuTCzGyv54R_kf8W_AFm2qng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819662541</pqid></control><display><type>article</type><title>Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks</title><source>Publicly Available Content Database</source><creator>Pantis-Simut, Calin-Andrei ; Preda, Amanda Teodora ; Ion, Lucian ; Manolescu, Andrei ; Alexandru Nemnes, George</creator><creatorcontrib>Pantis-Simut, Calin-Andrei ; Preda, Amanda Teodora ; Ion, Lucian ; Manolescu, Andrei ; Alexandru Nemnes, George</creatorcontrib><description>Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-standard for few electron systems. However, by increasing the number of instances to be solved, the computational costs become prohibitive and new approaches based on machine learning techniques can provide a significant reduction in computational time and resources, maintaining a reasonable accuracy. Here, we employ
pix2pix
, a general-purpose image-to-image translation method based on conditional generative adversarial network (cGAN), for predicting ground state densities from randomly generated confinement potentials. Other mappings were also investigated, like potentials to non-interacting densities and the translation from non-interacting to interacting densities. The architecture of the cGAN was optimized with respect to the internal parameters of the generator and discriminator. Moreover, the inverse problem of finding the confinement potential given the interacting density can also be approached by the
pix2pix
mapping, which is an important step in finding near-optimal solutions for confinement potentials.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/acd6d8</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computing costs ; Computing time ; conditional generative adversarial networks ; Confinement ; Generative adversarial networks ; Ground state ; Inverse problems ; Machine learning ; Mapping ; Nanoelectronics ; Nanotechnology devices ; pix2pix ; potential-density mapping ; quantum many-body systems</subject><ispartof>Machine learning: science and technology, 2023-06, Vol.4 (2), p.25023</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283</citedby><cites>FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283</cites><orcidid>0000-0001-6722-1631 ; 0000-0002-8500-4953 ; 0000-0002-7044-530X ; 0000-0002-2672-6163 ; 0000-0002-0713-4664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2819662541?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Pantis-Simut, Calin-Andrei</creatorcontrib><creatorcontrib>Preda, Amanda Teodora</creatorcontrib><creatorcontrib>Ion, Lucian</creatorcontrib><creatorcontrib>Manolescu, Andrei</creatorcontrib><creatorcontrib>Alexandru Nemnes, George</creatorcontrib><title>Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-standard for few electron systems. However, by increasing the number of instances to be solved, the computational costs become prohibitive and new approaches based on machine learning techniques can provide a significant reduction in computational time and resources, maintaining a reasonable accuracy. Here, we employ
pix2pix
, a general-purpose image-to-image translation method based on conditional generative adversarial network (cGAN), for predicting ground state densities from randomly generated confinement potentials. Other mappings were also investigated, like potentials to non-interacting densities and the translation from non-interacting to interacting densities. The architecture of the cGAN was optimized with respect to the internal parameters of the generator and discriminator. Moreover, the inverse problem of finding the confinement potential given the interacting density can also be approached by the
pix2pix
mapping, which is an important step in finding near-optimal solutions for confinement potentials.</description><subject>Computing costs</subject><subject>Computing time</subject><subject>conditional generative adversarial networks</subject><subject>Confinement</subject><subject>Generative adversarial networks</subject><subject>Ground state</subject><subject>Inverse problems</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>pix2pix</subject><subject>potential-density mapping</subject><subject>quantum many-body systems</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kT1vFDEQhleISEQhfUpLFDQc8eeut0QRhEiJaJLamrVnDx-39sb2BqXPD8fHRoECqrFGz_uMrLdpzhj9yKjW57wVfMOZEudgXev0q-b4ZfX6r_eb5jTnHaWUKyYUp8fN0w3Msw9bYmMYfcAJQyFzLHV42GcCwRH7HdIWicOQffGYSRyJDwUT2HKI3i8QyjKR_JgLTpks-VnoKh4D7MkWQ6WLf0AC7gFThlTtJGD5GdOP_LY5GusxPH2eJ83dl8-3F183198ury4-XW-slLpsOkQGWrV9N7YgOwsd74VmeuCs7bWSclR0HNUguEY54ABccSed6LGnQnMtTpqr1esi7Myc_ATp0UTw5vcipq2BVLzdo9E9UjoMHJSlcmCd1oNjnQClqha7trrera45xfsFczG7uKT62Wy4Zn3bciVZpehK2RRzTji-XGXUHKozh27MoRuzVlcj79eIj_Mf57SvF6ThplZHuTCzGyv54R_kf8W_AFm2qng</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Pantis-Simut, Calin-Andrei</creator><creator>Preda, Amanda Teodora</creator><creator>Ion, Lucian</creator><creator>Manolescu, Andrei</creator><creator>Alexandru Nemnes, George</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6722-1631</orcidid><orcidid>https://orcid.org/0000-0002-8500-4953</orcidid><orcidid>https://orcid.org/0000-0002-7044-530X</orcidid><orcidid>https://orcid.org/0000-0002-2672-6163</orcidid><orcidid>https://orcid.org/0000-0002-0713-4664</orcidid></search><sort><creationdate>20230601</creationdate><title>Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks</title><author>Pantis-Simut, Calin-Andrei ; Preda, Amanda Teodora ; Ion, Lucian ; Manolescu, Andrei ; Alexandru Nemnes, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing costs</topic><topic>Computing time</topic><topic>conditional generative adversarial networks</topic><topic>Confinement</topic><topic>Generative adversarial networks</topic><topic>Ground state</topic><topic>Inverse problems</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>pix2pix</topic><topic>potential-density mapping</topic><topic>quantum many-body systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pantis-Simut, Calin-Andrei</creatorcontrib><creatorcontrib>Preda, Amanda Teodora</creatorcontrib><creatorcontrib>Ion, Lucian</creatorcontrib><creatorcontrib>Manolescu, Andrei</creatorcontrib><creatorcontrib>Alexandru Nemnes, George</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pantis-Simut, Calin-Andrei</au><au>Preda, Amanda Teodora</au><au>Ion, Lucian</au><au>Manolescu, Andrei</au><au>Alexandru Nemnes, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>4</volume><issue>2</issue><spage>25023</spage><pages>25023-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-standard for few electron systems. However, by increasing the number of instances to be solved, the computational costs become prohibitive and new approaches based on machine learning techniques can provide a significant reduction in computational time and resources, maintaining a reasonable accuracy. Here, we employ
pix2pix
, a general-purpose image-to-image translation method based on conditional generative adversarial network (cGAN), for predicting ground state densities from randomly generated confinement potentials. Other mappings were also investigated, like potentials to non-interacting densities and the translation from non-interacting to interacting densities. The architecture of the cGAN was optimized with respect to the internal parameters of the generator and discriminator. Moreover, the inverse problem of finding the confinement potential given the interacting density can also be approached by the
pix2pix
mapping, which is an important step in finding near-optimal solutions for confinement potentials.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/acd6d8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6722-1631</orcidid><orcidid>https://orcid.org/0000-0002-8500-4953</orcidid><orcidid>https://orcid.org/0000-0002-7044-530X</orcidid><orcidid>https://orcid.org/0000-0002-2672-6163</orcidid><orcidid>https://orcid.org/0000-0002-0713-4664</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-2153 |
ispartof | Machine learning: science and technology, 2023-06, Vol.4 (2), p.25023 |
issn | 2632-2153 2632-2153 |
language | eng |
recordid | cdi_iop_journals_10_1088_2632_2153_acd6d8 |
source | Publicly Available Content Database |
subjects | Computing costs Computing time conditional generative adversarial networks Confinement Generative adversarial networks Ground state Inverse problems Machine learning Mapping Nanoelectronics Nanotechnology devices pix2pix potential-density mapping quantum many-body systems |
title | Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20confinement%20potentials%20and%20charge%20densities%20of%20interacting%20quantum%20systems%20using%20conditional%20generative%20adversarial%20networks&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Pantis-Simut,%20Calin-Andrei&rft.date=2023-06-01&rft.volume=4&rft.issue=2&rft.spage=25023&rft.pages=25023-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/acd6d8&rft_dat=%3Cproquest_iop_j%3E2819662541%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819662541&rft_id=info:pmid/&rfr_iscdi=true |