Loading…

Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks

Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-s...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning: science and technology 2023-06, Vol.4 (2), p.25023
Main Authors: Pantis-Simut, Calin-Andrei, Preda, Amanda Teodora, Ion, Lucian, Manolescu, Andrei, Alexandru Nemnes, George
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283
cites cdi_FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283
container_end_page
container_issue 2
container_start_page 25023
container_title Machine learning: science and technology
container_volume 4
creator Pantis-Simut, Calin-Andrei
Preda, Amanda Teodora
Ion, Lucian
Manolescu, Andrei
Alexandru Nemnes, George
description Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-standard for few electron systems. However, by increasing the number of instances to be solved, the computational costs become prohibitive and new approaches based on machine learning techniques can provide a significant reduction in computational time and resources, maintaining a reasonable accuracy. Here, we employ pix2pix , a general-purpose image-to-image translation method based on conditional generative adversarial network (cGAN), for predicting ground state densities from randomly generated confinement potentials. Other mappings were also investigated, like potentials to non-interacting densities and the translation from non-interacting to interacting densities. The architecture of the cGAN was optimized with respect to the internal parameters of the generator and discriminator. Moreover, the inverse problem of finding the confinement potential given the interacting density can also be approached by the pix2pix mapping, which is an important step in finding near-optimal solutions for confinement potentials.
doi_str_mv 10.1088/2632-2153/acd6d8
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2632_2153_acd6d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_89e00bb2a5c04b1788bd173a55ba2e76</doaj_id><sourcerecordid>2819662541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283</originalsourceid><addsrcrecordid>eNp1kT1vFDEQhleISEQhfUpLFDQc8eeut0QRhEiJaJLamrVnDx-39sb2BqXPD8fHRoECqrFGz_uMrLdpzhj9yKjW57wVfMOZEudgXev0q-b4ZfX6r_eb5jTnHaWUKyYUp8fN0w3Msw9bYmMYfcAJQyFzLHV42GcCwRH7HdIWicOQffGYSRyJDwUT2HKI3i8QyjKR_JgLTpks-VnoKh4D7MkWQ6WLf0AC7gFThlTtJGD5GdOP_LY5GusxPH2eJ83dl8-3F183198ury4-XW-slLpsOkQGWrV9N7YgOwsd74VmeuCs7bWSclR0HNUguEY54ABccSed6LGnQnMtTpqr1esi7Myc_ATp0UTw5vcipq2BVLzdo9E9UjoMHJSlcmCd1oNjnQClqha7trrera45xfsFczG7uKT62Wy4Zn3bciVZpehK2RRzTji-XGXUHKozh27MoRuzVlcj79eIj_Mf57SvF6ThplZHuTCzGyv54R_kf8W_AFm2qng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819662541</pqid></control><display><type>article</type><title>Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks</title><source>Publicly Available Content Database</source><creator>Pantis-Simut, Calin-Andrei ; Preda, Amanda Teodora ; Ion, Lucian ; Manolescu, Andrei ; Alexandru Nemnes, George</creator><creatorcontrib>Pantis-Simut, Calin-Andrei ; Preda, Amanda Teodora ; Ion, Lucian ; Manolescu, Andrei ; Alexandru Nemnes, George</creatorcontrib><description>Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-standard for few electron systems. However, by increasing the number of instances to be solved, the computational costs become prohibitive and new approaches based on machine learning techniques can provide a significant reduction in computational time and resources, maintaining a reasonable accuracy. Here, we employ pix2pix , a general-purpose image-to-image translation method based on conditional generative adversarial network (cGAN), for predicting ground state densities from randomly generated confinement potentials. Other mappings were also investigated, like potentials to non-interacting densities and the translation from non-interacting to interacting densities. The architecture of the cGAN was optimized with respect to the internal parameters of the generator and discriminator. Moreover, the inverse problem of finding the confinement potential given the interacting density can also be approached by the pix2pix mapping, which is an important step in finding near-optimal solutions for confinement potentials.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/acd6d8</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computing costs ; Computing time ; conditional generative adversarial networks ; Confinement ; Generative adversarial networks ; Ground state ; Inverse problems ; Machine learning ; Mapping ; Nanoelectronics ; Nanotechnology devices ; pix2pix ; potential-density mapping ; quantum many-body systems</subject><ispartof>Machine learning: science and technology, 2023-06, Vol.4 (2), p.25023</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283</citedby><cites>FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283</cites><orcidid>0000-0001-6722-1631 ; 0000-0002-8500-4953 ; 0000-0002-7044-530X ; 0000-0002-2672-6163 ; 0000-0002-0713-4664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2819662541?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Pantis-Simut, Calin-Andrei</creatorcontrib><creatorcontrib>Preda, Amanda Teodora</creatorcontrib><creatorcontrib>Ion, Lucian</creatorcontrib><creatorcontrib>Manolescu, Andrei</creatorcontrib><creatorcontrib>Alexandru Nemnes, George</creatorcontrib><title>Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-standard for few electron systems. However, by increasing the number of instances to be solved, the computational costs become prohibitive and new approaches based on machine learning techniques can provide a significant reduction in computational time and resources, maintaining a reasonable accuracy. Here, we employ pix2pix , a general-purpose image-to-image translation method based on conditional generative adversarial network (cGAN), for predicting ground state densities from randomly generated confinement potentials. Other mappings were also investigated, like potentials to non-interacting densities and the translation from non-interacting to interacting densities. The architecture of the cGAN was optimized with respect to the internal parameters of the generator and discriminator. Moreover, the inverse problem of finding the confinement potential given the interacting density can also be approached by the pix2pix mapping, which is an important step in finding near-optimal solutions for confinement potentials.</description><subject>Computing costs</subject><subject>Computing time</subject><subject>conditional generative adversarial networks</subject><subject>Confinement</subject><subject>Generative adversarial networks</subject><subject>Ground state</subject><subject>Inverse problems</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>pix2pix</subject><subject>potential-density mapping</subject><subject>quantum many-body systems</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kT1vFDEQhleISEQhfUpLFDQc8eeut0QRhEiJaJLamrVnDx-39sb2BqXPD8fHRoECqrFGz_uMrLdpzhj9yKjW57wVfMOZEudgXev0q-b4ZfX6r_eb5jTnHaWUKyYUp8fN0w3Msw9bYmMYfcAJQyFzLHV42GcCwRH7HdIWicOQffGYSRyJDwUT2HKI3i8QyjKR_JgLTpks-VnoKh4D7MkWQ6WLf0AC7gFThlTtJGD5GdOP_LY5GusxPH2eJ83dl8-3F183198ury4-XW-slLpsOkQGWrV9N7YgOwsd74VmeuCs7bWSclR0HNUguEY54ABccSed6LGnQnMtTpqr1esi7Myc_ATp0UTw5vcipq2BVLzdo9E9UjoMHJSlcmCd1oNjnQClqha7trrera45xfsFczG7uKT62Wy4Zn3bciVZpehK2RRzTji-XGXUHKozh27MoRuzVlcj79eIj_Mf57SvF6ThplZHuTCzGyv54R_kf8W_AFm2qng</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Pantis-Simut, Calin-Andrei</creator><creator>Preda, Amanda Teodora</creator><creator>Ion, Lucian</creator><creator>Manolescu, Andrei</creator><creator>Alexandru Nemnes, George</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6722-1631</orcidid><orcidid>https://orcid.org/0000-0002-8500-4953</orcidid><orcidid>https://orcid.org/0000-0002-7044-530X</orcidid><orcidid>https://orcid.org/0000-0002-2672-6163</orcidid><orcidid>https://orcid.org/0000-0002-0713-4664</orcidid></search><sort><creationdate>20230601</creationdate><title>Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks</title><author>Pantis-Simut, Calin-Andrei ; Preda, Amanda Teodora ; Ion, Lucian ; Manolescu, Andrei ; Alexandru Nemnes, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing costs</topic><topic>Computing time</topic><topic>conditional generative adversarial networks</topic><topic>Confinement</topic><topic>Generative adversarial networks</topic><topic>Ground state</topic><topic>Inverse problems</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>pix2pix</topic><topic>potential-density mapping</topic><topic>quantum many-body systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pantis-Simut, Calin-Andrei</creatorcontrib><creatorcontrib>Preda, Amanda Teodora</creatorcontrib><creatorcontrib>Ion, Lucian</creatorcontrib><creatorcontrib>Manolescu, Andrei</creatorcontrib><creatorcontrib>Alexandru Nemnes, George</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pantis-Simut, Calin-Andrei</au><au>Preda, Amanda Teodora</au><au>Ion, Lucian</au><au>Manolescu, Andrei</au><au>Alexandru Nemnes, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>4</volume><issue>2</issue><spage>25023</spage><pages>25023-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-standard for few electron systems. However, by increasing the number of instances to be solved, the computational costs become prohibitive and new approaches based on machine learning techniques can provide a significant reduction in computational time and resources, maintaining a reasonable accuracy. Here, we employ pix2pix , a general-purpose image-to-image translation method based on conditional generative adversarial network (cGAN), for predicting ground state densities from randomly generated confinement potentials. Other mappings were also investigated, like potentials to non-interacting densities and the translation from non-interacting to interacting densities. The architecture of the cGAN was optimized with respect to the internal parameters of the generator and discriminator. Moreover, the inverse problem of finding the confinement potential given the interacting density can also be approached by the pix2pix mapping, which is an important step in finding near-optimal solutions for confinement potentials.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/acd6d8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6722-1631</orcidid><orcidid>https://orcid.org/0000-0002-8500-4953</orcidid><orcidid>https://orcid.org/0000-0002-7044-530X</orcidid><orcidid>https://orcid.org/0000-0002-2672-6163</orcidid><orcidid>https://orcid.org/0000-0002-0713-4664</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2023-06, Vol.4 (2), p.25023
issn 2632-2153
2632-2153
language eng
recordid cdi_iop_journals_10_1088_2632_2153_acd6d8
source Publicly Available Content Database
subjects Computing costs
Computing time
conditional generative adversarial networks
Confinement
Generative adversarial networks
Ground state
Inverse problems
Machine learning
Mapping
Nanoelectronics
Nanotechnology devices
pix2pix
potential-density mapping
quantum many-body systems
title Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20confinement%20potentials%20and%20charge%20densities%20of%20interacting%20quantum%20systems%20using%20conditional%20generative%20adversarial%20networks&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Pantis-Simut,%20Calin-Andrei&rft.date=2023-06-01&rft.volume=4&rft.issue=2&rft.spage=25023&rft.pages=25023-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/acd6d8&rft_dat=%3Cproquest_iop_j%3E2819662541%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-7ee1a85697f6a47ca7293818b21698544f50ff5b328e4beba252d4d39e9038283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819662541&rft_id=info:pmid/&rfr_iscdi=true