Loading…

Green synthesis of copper nanoparticles using leaf extract of Ageratum houstonianum Mill. and study of their photocatalytic and antibacterial activities

The novel copper nanoparticles (CuNPs) were synthesized using aqueous leaf extract of Ageratum houstonianum Mill. (AHLE). The green synthesized AH-CuNPs have a useful dye degradation property in the existence of daylight. The photocatalytic activity of AH-CuNPs was evaluated against an azo dye congo...

Full description

Saved in:
Bibliographic Details
Published in:Nano express 2020-06, Vol.1 (1), p.10033
Main Authors: Chandraker, Sandip Kumar, Lal, Mishri, Ghosh, Mithun Kumar, Tiwari, Vivek, Ghorai, Tanmay Kumar, Shukla, Ravindra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The novel copper nanoparticles (CuNPs) were synthesized using aqueous leaf extract of Ageratum houstonianum Mill. (AHLE). The green synthesized AH-CuNPs have a useful dye degradation property in the existence of daylight. The photocatalytic activity of AH-CuNPs was evaluated against an azo dye congo red (CR), whereas, same NPs displayed no effect on other dyes. The CR was completely degraded within 2 h, and the reaction rate was followed by pseudo-first-order kinetics, and the rate constant was recorded 3.1 × 10−4 s−1, (R2 = 0.9359). Antibacterial activity of green synthesized AH-CuNPs was studied against gram-negative bacterium Escherichia coli (MTCC no. 40), and a significant growth inhibition was recorded with 12.43 0.233 mm zone of inhibition. The AH-CuNPs were characterized through UV-visible spectroscopy, XRD, SEM, FT-IR, TEM, and zeta particle size analyzer. Ageratum houstonianum mediated green synthesized copper nanoparticles (AH-CuNPs) were cubic, hexagonal, and rectangular in shape, with average size of ∼80 nm. The optical band gap was 4.5 eV, which was investigated using UV-visible spectroscopy, and the band gap value revealed that AH-CuNPs were semiconductor materials.
ISSN:2632-959X
2632-959X
DOI:10.1088/2632-959X/ab8e99