Loading…

Structural properties of graded In x Ga 1−x As metamorphic buffer layers for quantum dots emitting in the telecom bands

In recent years, there has been a significant increase in interest in tuning the emission wavelength of InAs quantum dots (QDs) to wavelengths compatible with the already existing silica fiber networks. In this work, we develop and explore compositionally graded In x Ga 1 − x As metamorphic buffer l...

Full description

Saved in:
Bibliographic Details
Published in:Materials for quantum technology 2023-09, Vol.3 (3), p.35004
Main Authors: Scaparra, Bianca, Ajay, Akhil, Avdienko, Pavel S, Xue, Yuyang, Riedl, Hubert, Kohl, Paul, Jonas, Björn, Costa, Beatrice, Sirotti, Elise, Schmiedeke, Paul, Villafañe, Viviana, Sharp, Ian D, Zallo, Eugenio, Koblmüller, Gregor, Finley, Jonathan J, Müller, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c283t-afb0b168c9eb46339fc86275bdbf0975ede09104bcac0534a91677c7f4e7af7d3
cites cdi_FETCH-LOGICAL-c283t-afb0b168c9eb46339fc86275bdbf0975ede09104bcac0534a91677c7f4e7af7d3
container_end_page
container_issue 3
container_start_page 35004
container_title Materials for quantum technology
container_volume 3
creator Scaparra, Bianca
Ajay, Akhil
Avdienko, Pavel S
Xue, Yuyang
Riedl, Hubert
Kohl, Paul
Jonas, Björn
Costa, Beatrice
Sirotti, Elise
Schmiedeke, Paul
Villafañe, Viviana
Sharp, Ian D
Zallo, Eugenio
Koblmüller, Gregor
Finley, Jonathan J
Müller, Kai
description In recent years, there has been a significant increase in interest in tuning the emission wavelength of InAs quantum dots (QDs) to wavelengths compatible with the already existing silica fiber networks. In this work, we develop and explore compositionally graded In x Ga 1 − x As metamorphic buffer layers (MBLs), with lattice constant carefully tailored to tune the emission wavelengths of InAs QDs towards the telecom O-band. The designed heterostructure is grown by molecular beam epitaxy (MBE), where a single layer of InAs QDs is grown on top of the MBL and is capped with a layer having a fixed indium (In) content. We investigate the structural properties of the grown MBLs by reciprocal space mapping, as well as transmission electron microscopy, and verify the dependence of the absorption edge of the MBL on the In-content by photothermal deflection spectroscopy measurements. This allows us to identify a growth temperature range for which the MBLs achieve a near-equilibrium strain relaxation for In-content up to ∼30 % . Furthermore, we explore the emission wavelength tunability of QDs grown on top of a residual strained layer with a low density of dislocations. Specifically, we demonstrate a characteristic red-shift of the QD photoluminescence towards the telecom O-band (1300 nm) at low temperature. This study provides insights into the relaxation profiles and dislocation propagation in compositionally graded MBLs grown via MBE thus paving the way for realizing MBE-grown heterostructures containing InAs QDs for advanced nanophotonic devices emitting in the telecom bands.
doi_str_mv 10.1088/2633-4356/aced32
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2633_4356_aced32</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mqtaced32</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-afb0b168c9eb46339fc86275bdbf0975ede09104bcac0534a91677c7f4e7af7d3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxiMEElXpzngTE6V2nMTJWFX8qVSJAZgtxz63qZI4tR2pfQNmHpEnIVURYgDdcKfT9326-0XRNSV3lOT5LM4YmyYszWZSoWbxWTT6WZ3_mi-jifdbQkjMOaVZMooOL8H1KvRO1tA526ELFXqwBtZOatSwbGEPjxLo5_vHHuYeGgyysa7bVArK3hh0UMsDOg_GOtj1sg19A9oGD9hUIVTtGqoWwgYhYI3KNlDKVvur6MLI2uPku4-jt4f718XTdPX8uFzMV1MV5yxMpSlJSbNcFVgmwx-FUXkW87TUpSEFT1EjKShJSiUVSVkiC5pxrrhJkEvDNRtH5JSrnPXeoRGdqxrpDoIScaQnjnjEEY840RssNydLZTuxtb1rhwNFswuCDUVYSkgiOm0G4e0fwn9zvwAmhoEO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural properties of graded In x Ga 1−x As metamorphic buffer layers for quantum dots emitting in the telecom bands</title><source>DOAJ Directory of Open Access Journals</source><creator>Scaparra, Bianca ; Ajay, Akhil ; Avdienko, Pavel S ; Xue, Yuyang ; Riedl, Hubert ; Kohl, Paul ; Jonas, Björn ; Costa, Beatrice ; Sirotti, Elise ; Schmiedeke, Paul ; Villafañe, Viviana ; Sharp, Ian D ; Zallo, Eugenio ; Koblmüller, Gregor ; Finley, Jonathan J ; Müller, Kai</creator><creatorcontrib>Scaparra, Bianca ; Ajay, Akhil ; Avdienko, Pavel S ; Xue, Yuyang ; Riedl, Hubert ; Kohl, Paul ; Jonas, Björn ; Costa, Beatrice ; Sirotti, Elise ; Schmiedeke, Paul ; Villafañe, Viviana ; Sharp, Ian D ; Zallo, Eugenio ; Koblmüller, Gregor ; Finley, Jonathan J ; Müller, Kai</creatorcontrib><description>In recent years, there has been a significant increase in interest in tuning the emission wavelength of InAs quantum dots (QDs) to wavelengths compatible with the already existing silica fiber networks. In this work, we develop and explore compositionally graded In x Ga 1 − x As metamorphic buffer layers (MBLs), with lattice constant carefully tailored to tune the emission wavelengths of InAs QDs towards the telecom O-band. The designed heterostructure is grown by molecular beam epitaxy (MBE), where a single layer of InAs QDs is grown on top of the MBL and is capped with a layer having a fixed indium (In) content. We investigate the structural properties of the grown MBLs by reciprocal space mapping, as well as transmission electron microscopy, and verify the dependence of the absorption edge of the MBL on the In-content by photothermal deflection spectroscopy measurements. This allows us to identify a growth temperature range for which the MBLs achieve a near-equilibrium strain relaxation for In-content up to ∼30 % . Furthermore, we explore the emission wavelength tunability of QDs grown on top of a residual strained layer with a low density of dislocations. Specifically, we demonstrate a characteristic red-shift of the QD photoluminescence towards the telecom O-band (1300 nm) at low temperature. This study provides insights into the relaxation profiles and dislocation propagation in compositionally graded MBLs grown via MBE thus paving the way for realizing MBE-grown heterostructures containing InAs QDs for advanced nanophotonic devices emitting in the telecom bands.</description><identifier>ISSN: 2633-4356</identifier><identifier>EISSN: 2633-4356</identifier><identifier>DOI: 10.1088/2633-4356/aced32</identifier><identifier>CODEN: MQTAAZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>compositionally graded layers ; molecular beam epitaxy ; quantum dots ; telecommunication spectral range</subject><ispartof>Materials for quantum technology, 2023-09, Vol.3 (3), p.35004</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-afb0b168c9eb46339fc86275bdbf0975ede09104bcac0534a91677c7f4e7af7d3</citedby><cites>FETCH-LOGICAL-c283t-afb0b168c9eb46339fc86275bdbf0975ede09104bcac0534a91677c7f4e7af7d3</cites><orcidid>0000-0003-1796-9777 ; 0009-0000-6990-0515 ; 0000-0002-7228-0158 ; 0009-0009-7420-5934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Scaparra, Bianca</creatorcontrib><creatorcontrib>Ajay, Akhil</creatorcontrib><creatorcontrib>Avdienko, Pavel S</creatorcontrib><creatorcontrib>Xue, Yuyang</creatorcontrib><creatorcontrib>Riedl, Hubert</creatorcontrib><creatorcontrib>Kohl, Paul</creatorcontrib><creatorcontrib>Jonas, Björn</creatorcontrib><creatorcontrib>Costa, Beatrice</creatorcontrib><creatorcontrib>Sirotti, Elise</creatorcontrib><creatorcontrib>Schmiedeke, Paul</creatorcontrib><creatorcontrib>Villafañe, Viviana</creatorcontrib><creatorcontrib>Sharp, Ian D</creatorcontrib><creatorcontrib>Zallo, Eugenio</creatorcontrib><creatorcontrib>Koblmüller, Gregor</creatorcontrib><creatorcontrib>Finley, Jonathan J</creatorcontrib><creatorcontrib>Müller, Kai</creatorcontrib><title>Structural properties of graded In x Ga 1−x As metamorphic buffer layers for quantum dots emitting in the telecom bands</title><title>Materials for quantum technology</title><addtitle>MQT</addtitle><addtitle>Mater. Quantum Technol</addtitle><description>In recent years, there has been a significant increase in interest in tuning the emission wavelength of InAs quantum dots (QDs) to wavelengths compatible with the already existing silica fiber networks. In this work, we develop and explore compositionally graded In x Ga 1 − x As metamorphic buffer layers (MBLs), with lattice constant carefully tailored to tune the emission wavelengths of InAs QDs towards the telecom O-band. The designed heterostructure is grown by molecular beam epitaxy (MBE), where a single layer of InAs QDs is grown on top of the MBL and is capped with a layer having a fixed indium (In) content. We investigate the structural properties of the grown MBLs by reciprocal space mapping, as well as transmission electron microscopy, and verify the dependence of the absorption edge of the MBL on the In-content by photothermal deflection spectroscopy measurements. This allows us to identify a growth temperature range for which the MBLs achieve a near-equilibrium strain relaxation for In-content up to ∼30 % . Furthermore, we explore the emission wavelength tunability of QDs grown on top of a residual strained layer with a low density of dislocations. Specifically, we demonstrate a characteristic red-shift of the QD photoluminescence towards the telecom O-band (1300 nm) at low temperature. This study provides insights into the relaxation profiles and dislocation propagation in compositionally graded MBLs grown via MBE thus paving the way for realizing MBE-grown heterostructures containing InAs QDs for advanced nanophotonic devices emitting in the telecom bands.</description><subject>compositionally graded layers</subject><subject>molecular beam epitaxy</subject><subject>quantum dots</subject><subject>telecommunication spectral range</subject><issn>2633-4356</issn><issn>2633-4356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxiMEElXpzngTE6V2nMTJWFX8qVSJAZgtxz63qZI4tR2pfQNmHpEnIVURYgDdcKfT9326-0XRNSV3lOT5LM4YmyYszWZSoWbxWTT6WZ3_mi-jifdbQkjMOaVZMooOL8H1KvRO1tA526ELFXqwBtZOatSwbGEPjxLo5_vHHuYeGgyysa7bVArK3hh0UMsDOg_GOtj1sg19A9oGD9hUIVTtGqoWwgYhYI3KNlDKVvur6MLI2uPku4-jt4f718XTdPX8uFzMV1MV5yxMpSlJSbNcFVgmwx-FUXkW87TUpSEFT1EjKShJSiUVSVkiC5pxrrhJkEvDNRtH5JSrnPXeoRGdqxrpDoIScaQnjnjEEY840RssNydLZTuxtb1rhwNFswuCDUVYSkgiOm0G4e0fwn9zvwAmhoEO</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Scaparra, Bianca</creator><creator>Ajay, Akhil</creator><creator>Avdienko, Pavel S</creator><creator>Xue, Yuyang</creator><creator>Riedl, Hubert</creator><creator>Kohl, Paul</creator><creator>Jonas, Björn</creator><creator>Costa, Beatrice</creator><creator>Sirotti, Elise</creator><creator>Schmiedeke, Paul</creator><creator>Villafañe, Viviana</creator><creator>Sharp, Ian D</creator><creator>Zallo, Eugenio</creator><creator>Koblmüller, Gregor</creator><creator>Finley, Jonathan J</creator><creator>Müller, Kai</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1796-9777</orcidid><orcidid>https://orcid.org/0009-0000-6990-0515</orcidid><orcidid>https://orcid.org/0000-0002-7228-0158</orcidid><orcidid>https://orcid.org/0009-0009-7420-5934</orcidid></search><sort><creationdate>20230901</creationdate><title>Structural properties of graded In x Ga 1−x As metamorphic buffer layers for quantum dots emitting in the telecom bands</title><author>Scaparra, Bianca ; Ajay, Akhil ; Avdienko, Pavel S ; Xue, Yuyang ; Riedl, Hubert ; Kohl, Paul ; Jonas, Björn ; Costa, Beatrice ; Sirotti, Elise ; Schmiedeke, Paul ; Villafañe, Viviana ; Sharp, Ian D ; Zallo, Eugenio ; Koblmüller, Gregor ; Finley, Jonathan J ; Müller, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-afb0b168c9eb46339fc86275bdbf0975ede09104bcac0534a91677c7f4e7af7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>compositionally graded layers</topic><topic>molecular beam epitaxy</topic><topic>quantum dots</topic><topic>telecommunication spectral range</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scaparra, Bianca</creatorcontrib><creatorcontrib>Ajay, Akhil</creatorcontrib><creatorcontrib>Avdienko, Pavel S</creatorcontrib><creatorcontrib>Xue, Yuyang</creatorcontrib><creatorcontrib>Riedl, Hubert</creatorcontrib><creatorcontrib>Kohl, Paul</creatorcontrib><creatorcontrib>Jonas, Björn</creatorcontrib><creatorcontrib>Costa, Beatrice</creatorcontrib><creatorcontrib>Sirotti, Elise</creatorcontrib><creatorcontrib>Schmiedeke, Paul</creatorcontrib><creatorcontrib>Villafañe, Viviana</creatorcontrib><creatorcontrib>Sharp, Ian D</creatorcontrib><creatorcontrib>Zallo, Eugenio</creatorcontrib><creatorcontrib>Koblmüller, Gregor</creatorcontrib><creatorcontrib>Finley, Jonathan J</creatorcontrib><creatorcontrib>Müller, Kai</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Materials for quantum technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scaparra, Bianca</au><au>Ajay, Akhil</au><au>Avdienko, Pavel S</au><au>Xue, Yuyang</au><au>Riedl, Hubert</au><au>Kohl, Paul</au><au>Jonas, Björn</au><au>Costa, Beatrice</au><au>Sirotti, Elise</au><au>Schmiedeke, Paul</au><au>Villafañe, Viviana</au><au>Sharp, Ian D</au><au>Zallo, Eugenio</au><au>Koblmüller, Gregor</au><au>Finley, Jonathan J</au><au>Müller, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural properties of graded In x Ga 1−x As metamorphic buffer layers for quantum dots emitting in the telecom bands</atitle><jtitle>Materials for quantum technology</jtitle><stitle>MQT</stitle><addtitle>Mater. Quantum Technol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>3</volume><issue>3</issue><spage>35004</spage><pages>35004-</pages><issn>2633-4356</issn><eissn>2633-4356</eissn><coden>MQTAAZ</coden><abstract>In recent years, there has been a significant increase in interest in tuning the emission wavelength of InAs quantum dots (QDs) to wavelengths compatible with the already existing silica fiber networks. In this work, we develop and explore compositionally graded In x Ga 1 − x As metamorphic buffer layers (MBLs), with lattice constant carefully tailored to tune the emission wavelengths of InAs QDs towards the telecom O-band. The designed heterostructure is grown by molecular beam epitaxy (MBE), where a single layer of InAs QDs is grown on top of the MBL and is capped with a layer having a fixed indium (In) content. We investigate the structural properties of the grown MBLs by reciprocal space mapping, as well as transmission electron microscopy, and verify the dependence of the absorption edge of the MBL on the In-content by photothermal deflection spectroscopy measurements. This allows us to identify a growth temperature range for which the MBLs achieve a near-equilibrium strain relaxation for In-content up to ∼30 % . Furthermore, we explore the emission wavelength tunability of QDs grown on top of a residual strained layer with a low density of dislocations. Specifically, we demonstrate a characteristic red-shift of the QD photoluminescence towards the telecom O-band (1300 nm) at low temperature. This study provides insights into the relaxation profiles and dislocation propagation in compositionally graded MBLs grown via MBE thus paving the way for realizing MBE-grown heterostructures containing InAs QDs for advanced nanophotonic devices emitting in the telecom bands.</abstract><pub>IOP Publishing</pub><doi>10.1088/2633-4356/aced32</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1796-9777</orcidid><orcidid>https://orcid.org/0009-0000-6990-0515</orcidid><orcidid>https://orcid.org/0000-0002-7228-0158</orcidid><orcidid>https://orcid.org/0009-0009-7420-5934</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2633-4356
ispartof Materials for quantum technology, 2023-09, Vol.3 (3), p.35004
issn 2633-4356
2633-4356
language eng
recordid cdi_iop_journals_10_1088_2633_4356_aced32
source DOAJ Directory of Open Access Journals
subjects compositionally graded layers
molecular beam epitaxy
quantum dots
telecommunication spectral range
title Structural properties of graded In x Ga 1−x As metamorphic buffer layers for quantum dots emitting in the telecom bands
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20properties%20of%20graded%20In%20x%20Ga%201%E2%88%92x%20As%20metamorphic%20buffer%20layers%20for%20quantum%20dots%20emitting%20in%20the%20telecom%20bands&rft.jtitle=Materials%20for%20quantum%20technology&rft.au=Scaparra,%20Bianca&rft.date=2023-09-01&rft.volume=3&rft.issue=3&rft.spage=35004&rft.pages=35004-&rft.issn=2633-4356&rft.eissn=2633-4356&rft.coden=MQTAAZ&rft_id=info:doi/10.1088/2633-4356/aced32&rft_dat=%3Ciop_cross%3Emqtaced32%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c283t-afb0b168c9eb46339fc86275bdbf0975ede09104bcac0534a91677c7f4e7af7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true