Loading…
Pseudo-Steady-State Reduced-Order-Model Approximation for Constant-Current Parameter Identification in Lithium-Ion Cells
The challenges of parameter identification for a lumped-parameter, physics-based model of a lithium-ion cell motivate a closed-form approximation that can be used inside an optimization routine. Present reduced-order models of the lithium-ion cell do not achieve the desired speed and fidelity for th...
Saved in:
Published in: | Journal of the Electrochemical Society 2020-12, Vol.167 (16), p.160546 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The challenges of parameter identification for a lumped-parameter, physics-based model of a lithium-ion cell motivate a closed-form approximation that can be used inside an optimization routine. Present reduced-order models of the lithium-ion cell do not achieve the desired speed and fidelity for the parameter-identification application when applied to a constant-current test. This paper introduces a novel approximation to the cell internal and terminal-voltage dynamics that is specialized for constant-current applications and incorporates a model of solid and electrolyte diffusion, solid and electrolyte potential, and the kinetics of the solid-electrolyte interphase layer. The approximation leverages non-time-varying profiles for electrolyte-level quantities under a pseudo-steady-state assumption coupled with a nonlinear approximation to the lithium stoichiometry at the electrode surface. The proposed approximation achieves significantly improved speed and accuracy over a comparable reduced-order model simplified for constant current when evaluated against a full-order-model simulation using the true parameter values. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/1945-7111/abd44c |