Loading…

Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte

Hydroxide-exchange-membrane water electrolysis (HEMWE) is an emerging hydrogen-production pathway that combines many advantages of incumbent alkaline water electrolysis (AWE) and proton-exchange-membrane water electrolysis (PEMWE). Advancement in HEMWE has been accelerated with the development of st...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2021-08, Vol.168 (8), p.84512
Main Authors: Kiessling, Aleksandr, Fornaciari, Julie C., Anderson, Grace, Peng, Xiong, Gerstmayr, Andreas, Gerhardt, Michael R., McKinney, Samuel, Serov, Alexey, Kim, Yu Seung, Zulevi, Barr, Weber, Adam Z., Danilovic, Nemanja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-3717cc59c5792c68c22aa9a937e145f5833a05f1db188a11eec4a620a92dc8fb3
cites cdi_FETCH-LOGICAL-c382t-3717cc59c5792c68c22aa9a937e145f5833a05f1db188a11eec4a620a92dc8fb3
container_end_page
container_issue 8
container_start_page 84512
container_title Journal of the Electrochemical Society
container_volume 168
creator Kiessling, Aleksandr
Fornaciari, Julie C.
Anderson, Grace
Peng, Xiong
Gerstmayr, Andreas
Gerhardt, Michael R.
McKinney, Samuel
Serov, Alexey
Kim, Yu Seung
Zulevi, Barr
Weber, Adam Z.
Danilovic, Nemanja
description Hydroxide-exchange-membrane water electrolysis (HEMWE) is an emerging hydrogen-production pathway that combines many advantages of incumbent alkaline water electrolysis (AWE) and proton-exchange-membrane water electrolysis (PEMWE). Advancement in HEMWE has been accelerated with the development of stable and conductive hydroxide exchange membranes (HEMs) and a more comprehensive understanding of alkaline gas-evolving kinetics. However, performance and durability without supporting electrolytes (SELs) remain inferior to PEMWE and AWE and little is known about the role and impact of the SELs. This study investigates the effects of SELs used as anolyte solutions in HEMWEs including cation-type, anion-type, SEL conductivity and pH, presence of carbonates and increased cation/OH − ratios on cell voltage and stability. We report our findings that (i) cell potential and high-frequency resistance did not correlate with anolyte SEL conductivity, (ii) cation-type influences cell voltage at low current densities (
doi_str_mv 10.1149/1945-7111/ac1dcd
format article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_iop_journals_10_1149_1945_7111_ac1dcd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesac1dcd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3717cc59c5792c68c22aa9a937e145f5833a05f1db188a11eec4a620a92dc8fb3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwM1pMDIT6kjhx2CpUaKUikAAxWu7FbhO1dmSnUvvvSQmCBabT3b336e4RcgnsFiAtRlCkPMoBYKQQSiyPyOBndEwGjEESpRmHU3IWQt21INJ8QOqZNeuttqipM_R12zTOt5Vd0slaY-vdet92G0un-9K7XVVqOtnhStmlpk96s_DKavqhWu1_DaEK9EV74_xGddw7OrZfmHNyYtQ66IvvOiTvD5O3-2k0f36c3Y_nESYibqMkhxyRF8jzIsZMYBwrVagiyTWk3HCRJIpxA-UChFAAWmOqspipIi5RmEUyJFc914W2kgGrVuMKnbXdfRJEzHPGOhHrRehdCF4b2fhqo_xeApOHQOUhPXlIT_aBdpbr3lK5RtZu6233hax1kJAJKSQTKYdYNqXppDd_SP8lfwIm5obV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte</title><source>Institute of Physics</source><creator>Kiessling, Aleksandr ; Fornaciari, Julie C. ; Anderson, Grace ; Peng, Xiong ; Gerstmayr, Andreas ; Gerhardt, Michael R. ; McKinney, Samuel ; Serov, Alexey ; Kim, Yu Seung ; Zulevi, Barr ; Weber, Adam Z. ; Danilovic, Nemanja</creator><creatorcontrib>Kiessling, Aleksandr ; Fornaciari, Julie C. ; Anderson, Grace ; Peng, Xiong ; Gerstmayr, Andreas ; Gerhardt, Michael R. ; McKinney, Samuel ; Serov, Alexey ; Kim, Yu Seung ; Zulevi, Barr ; Weber, Adam Z. ; Danilovic, Nemanja ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Hydroxide-exchange-membrane water electrolysis (HEMWE) is an emerging hydrogen-production pathway that combines many advantages of incumbent alkaline water electrolysis (AWE) and proton-exchange-membrane water electrolysis (PEMWE). Advancement in HEMWE has been accelerated with the development of stable and conductive hydroxide exchange membranes (HEMs) and a more comprehensive understanding of alkaline gas-evolving kinetics. However, performance and durability without supporting electrolytes (SELs) remain inferior to PEMWE and AWE and little is known about the role and impact of the SELs. This study investigates the effects of SELs used as anolyte solutions in HEMWEs including cation-type, anion-type, SEL conductivity and pH, presence of carbonates and increased cation/OH − ratios on cell voltage and stability. We report our findings that (i) cell potential and high-frequency resistance did not correlate with anolyte SEL conductivity, (ii) cation-type influences cell voltage at low current densities (&lt;50 mA cm −2 ) as predicted by half-cell measurements, (iii) increased cation/OH − ratio causes increased overpotentials, and (iv) carbonates are exchanged in the HEM but removed via self-purging at high current density. Overall, this study concludes that concentrated KOH is still the best SEL.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ac1dcd</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>AEMWE ; alkaline exchange membrane ; Electrocatalysis ; Electrolysis ; Energy Sciences ; HEMWE ; Hydroxide exchange membrane ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Journal of the Electrochemical Society, 2021-08, Vol.168 (8), p.84512</ispartof><rights>2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3717cc59c5792c68c22aa9a937e145f5833a05f1db188a11eec4a620a92dc8fb3</citedby><cites>FETCH-LOGICAL-c382t-3717cc59c5792c68c22aa9a937e145f5833a05f1db188a11eec4a620a92dc8fb3</cites><orcidid>0000-0001-8737-5830 ; 0000-0002-2723-5024 ; 0000-0002-0473-2298 ; 0000-0002-7749-1624 ; 0000-0003-2036-6977 ; 0000-0003-3182-4726 ; 0000-0002-5446-3890 ; 0000-0003-1696-945X ; 0000-0002-1272-3607 ; 000000031696945X ; 0000000187375830 ; 0000000204732298 ; 0000000212723607 ; 0000000227235024 ; 0000000331824726 ; 0000000277491624 ; 0000000320366977 ; 0000000254463890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1825700$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiessling, Aleksandr</creatorcontrib><creatorcontrib>Fornaciari, Julie C.</creatorcontrib><creatorcontrib>Anderson, Grace</creatorcontrib><creatorcontrib>Peng, Xiong</creatorcontrib><creatorcontrib>Gerstmayr, Andreas</creatorcontrib><creatorcontrib>Gerhardt, Michael R.</creatorcontrib><creatorcontrib>McKinney, Samuel</creatorcontrib><creatorcontrib>Serov, Alexey</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Zulevi, Barr</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>Danilovic, Nemanja</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte</title><title>Journal of the Electrochemical Society</title><addtitle>JES</addtitle><addtitle>J. Electrochem. Soc</addtitle><description>Hydroxide-exchange-membrane water electrolysis (HEMWE) is an emerging hydrogen-production pathway that combines many advantages of incumbent alkaline water electrolysis (AWE) and proton-exchange-membrane water electrolysis (PEMWE). Advancement in HEMWE has been accelerated with the development of stable and conductive hydroxide exchange membranes (HEMs) and a more comprehensive understanding of alkaline gas-evolving kinetics. However, performance and durability without supporting electrolytes (SELs) remain inferior to PEMWE and AWE and little is known about the role and impact of the SELs. This study investigates the effects of SELs used as anolyte solutions in HEMWEs including cation-type, anion-type, SEL conductivity and pH, presence of carbonates and increased cation/OH − ratios on cell voltage and stability. We report our findings that (i) cell potential and high-frequency resistance did not correlate with anolyte SEL conductivity, (ii) cation-type influences cell voltage at low current densities (&lt;50 mA cm −2 ) as predicted by half-cell measurements, (iii) increased cation/OH − ratio causes increased overpotentials, and (iv) carbonates are exchanged in the HEM but removed via self-purging at high current density. Overall, this study concludes that concentrated KOH is still the best SEL.</description><subject>AEMWE</subject><subject>alkaline exchange membrane</subject><subject>Electrocatalysis</subject><subject>Electrolysis</subject><subject>Energy Sciences</subject><subject>HEMWE</subject><subject>Hydroxide exchange membrane</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwM1pMDIT6kjhx2CpUaKUikAAxWu7FbhO1dmSnUvvvSQmCBabT3b336e4RcgnsFiAtRlCkPMoBYKQQSiyPyOBndEwGjEESpRmHU3IWQt21INJ8QOqZNeuttqipM_R12zTOt5Vd0slaY-vdet92G0un-9K7XVVqOtnhStmlpk96s_DKavqhWu1_DaEK9EV74_xGddw7OrZfmHNyYtQ66IvvOiTvD5O3-2k0f36c3Y_nESYibqMkhxyRF8jzIsZMYBwrVagiyTWk3HCRJIpxA-UChFAAWmOqspipIi5RmEUyJFc914W2kgGrVuMKnbXdfRJEzHPGOhHrRehdCF4b2fhqo_xeApOHQOUhPXlIT_aBdpbr3lK5RtZu6233hax1kJAJKSQTKYdYNqXppDd_SP8lfwIm5obV</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Kiessling, Aleksandr</creator><creator>Fornaciari, Julie C.</creator><creator>Anderson, Grace</creator><creator>Peng, Xiong</creator><creator>Gerstmayr, Andreas</creator><creator>Gerhardt, Michael R.</creator><creator>McKinney, Samuel</creator><creator>Serov, Alexey</creator><creator>Kim, Yu Seung</creator><creator>Zulevi, Barr</creator><creator>Weber, Adam Z.</creator><creator>Danilovic, Nemanja</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8737-5830</orcidid><orcidid>https://orcid.org/0000-0002-2723-5024</orcidid><orcidid>https://orcid.org/0000-0002-0473-2298</orcidid><orcidid>https://orcid.org/0000-0002-7749-1624</orcidid><orcidid>https://orcid.org/0000-0003-2036-6977</orcidid><orcidid>https://orcid.org/0000-0003-3182-4726</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-1696-945X</orcidid><orcidid>https://orcid.org/0000-0002-1272-3607</orcidid><orcidid>https://orcid.org/000000031696945X</orcidid><orcidid>https://orcid.org/0000000187375830</orcidid><orcidid>https://orcid.org/0000000204732298</orcidid><orcidid>https://orcid.org/0000000212723607</orcidid><orcidid>https://orcid.org/0000000227235024</orcidid><orcidid>https://orcid.org/0000000331824726</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000320366977</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid></search><sort><creationdate>20210801</creationdate><title>Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte</title><author>Kiessling, Aleksandr ; Fornaciari, Julie C. ; Anderson, Grace ; Peng, Xiong ; Gerstmayr, Andreas ; Gerhardt, Michael R. ; McKinney, Samuel ; Serov, Alexey ; Kim, Yu Seung ; Zulevi, Barr ; Weber, Adam Z. ; Danilovic, Nemanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3717cc59c5792c68c22aa9a937e145f5833a05f1db188a11eec4a620a92dc8fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AEMWE</topic><topic>alkaline exchange membrane</topic><topic>Electrocatalysis</topic><topic>Electrolysis</topic><topic>Energy Sciences</topic><topic>HEMWE</topic><topic>Hydroxide exchange membrane</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiessling, Aleksandr</creatorcontrib><creatorcontrib>Fornaciari, Julie C.</creatorcontrib><creatorcontrib>Anderson, Grace</creatorcontrib><creatorcontrib>Peng, Xiong</creatorcontrib><creatorcontrib>Gerstmayr, Andreas</creatorcontrib><creatorcontrib>Gerhardt, Michael R.</creatorcontrib><creatorcontrib>McKinney, Samuel</creatorcontrib><creatorcontrib>Serov, Alexey</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Zulevi, Barr</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>Danilovic, Nemanja</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiessling, Aleksandr</au><au>Fornaciari, Julie C.</au><au>Anderson, Grace</au><au>Peng, Xiong</au><au>Gerstmayr, Andreas</au><au>Gerhardt, Michael R.</au><au>McKinney, Samuel</au><au>Serov, Alexey</au><au>Kim, Yu Seung</au><au>Zulevi, Barr</au><au>Weber, Adam Z.</au><au>Danilovic, Nemanja</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte</atitle><jtitle>Journal of the Electrochemical Society</jtitle><stitle>JES</stitle><addtitle>J. Electrochem. Soc</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>168</volume><issue>8</issue><spage>84512</spage><pages>84512-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Hydroxide-exchange-membrane water electrolysis (HEMWE) is an emerging hydrogen-production pathway that combines many advantages of incumbent alkaline water electrolysis (AWE) and proton-exchange-membrane water electrolysis (PEMWE). Advancement in HEMWE has been accelerated with the development of stable and conductive hydroxide exchange membranes (HEMs) and a more comprehensive understanding of alkaline gas-evolving kinetics. However, performance and durability without supporting electrolytes (SELs) remain inferior to PEMWE and AWE and little is known about the role and impact of the SELs. This study investigates the effects of SELs used as anolyte solutions in HEMWEs including cation-type, anion-type, SEL conductivity and pH, presence of carbonates and increased cation/OH − ratios on cell voltage and stability. We report our findings that (i) cell potential and high-frequency resistance did not correlate with anolyte SEL conductivity, (ii) cation-type influences cell voltage at low current densities (&lt;50 mA cm −2 ) as predicted by half-cell measurements, (iii) increased cation/OH − ratio causes increased overpotentials, and (iv) carbonates are exchanged in the HEM but removed via self-purging at high current density. Overall, this study concludes that concentrated KOH is still the best SEL.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ac1dcd</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8737-5830</orcidid><orcidid>https://orcid.org/0000-0002-2723-5024</orcidid><orcidid>https://orcid.org/0000-0002-0473-2298</orcidid><orcidid>https://orcid.org/0000-0002-7749-1624</orcidid><orcidid>https://orcid.org/0000-0003-2036-6977</orcidid><orcidid>https://orcid.org/0000-0003-3182-4726</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-1696-945X</orcidid><orcidid>https://orcid.org/0000-0002-1272-3607</orcidid><orcidid>https://orcid.org/000000031696945X</orcidid><orcidid>https://orcid.org/0000000187375830</orcidid><orcidid>https://orcid.org/0000000204732298</orcidid><orcidid>https://orcid.org/0000000212723607</orcidid><orcidid>https://orcid.org/0000000227235024</orcidid><orcidid>https://orcid.org/0000000331824726</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000320366977</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2021-08, Vol.168 (8), p.84512
issn 0013-4651
1945-7111
language eng
recordid cdi_iop_journals_10_1149_1945_7111_ac1dcd
source Institute of Physics
subjects AEMWE
alkaline exchange membrane
Electrocatalysis
Electrolysis
Energy Sciences
HEMWE
Hydroxide exchange membrane
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Supporting%20Electrolyte%20on%20Hydroxide%20Exchange%20Membrane%20Water%20Electrolysis%20Performance:%20Anolyte&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Kiessling,%20Aleksandr&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-08-01&rft.volume=168&rft.issue=8&rft.spage=84512&rft.pages=84512-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ac1dcd&rft_dat=%3Ciop_osti_%3Ejesac1dcd%3C/iop_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-3717cc59c5792c68c22aa9a937e145f5833a05f1db188a11eec4a620a92dc8fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true