Loading…
Improving the Performance at Elevated Temperature of High Voltage Graphite/LiNi0.5Mn1.5O4 Cells with Added Lithium Catechol Dimethyl Borate
Performance of LiNi0.5Mn1.5O4/graphite cells cycled to 4.8 V at 55°C with the 1.2 M LiPF6 in EC/EMC (3/7, STD electrolyte) with and without added lithium catechol dimethyl borate (LiCDMB) has been investigated. The incorporation of 0.5 wt% LiCDMB to the STD electrolyte results in an improved capacit...
Saved in:
Published in: | Journal of the Electrochemical Society 2017-01, Vol.164 (2), p.A128-A136 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Performance of LiNi0.5Mn1.5O4/graphite cells cycled to 4.8 V at 55°C with the 1.2 M LiPF6 in EC/EMC (3/7, STD electrolyte) with and without added lithium catechol dimethyl borate (LiCDMB) has been investigated. The incorporation of 0.5 wt% LiCDMB to the STD electrolyte results in an improved capacity retention and coulombic efficiency upon cycling at 55°C. Ex-situ analysis of the electrode surfaces via a combination of SEM, TEM, and XPS reveals that oxidation of LiCDMB at high potential results in the deposition of a passivation layer on the electrode surface, preventing transition metal ion dissolution from the cathode and subsequent deposition on the anode. NMR investigations of the bulk electrolyte stored at 85°C reveals that added LiCDMB prevents the thermal decomposition of LiPF6. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.0331702jes |