Loading…

Microelectrode Diagnostics of Lithium-Air Batteries

We demonstrate that a microelectrode can be used as a diagnostic tool to optimize the properties of electrolytes for non-aqueous Li-air batteries, and to elucidate the influence of ion-conducting salts on O2 reduction reaction mechanisms. Oxygen reduction/evolution reactions on carbon microelectrode...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2014-01, Vol.161 (3), p.A381-A392
Main Authors: Gunasekara, Iromie, Mukerjee, Sanjeev, Plichta, Edward J., Hendrickson, Mary A., Abraham, K. M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c302t-d6ed63f0d18f8c2887a1cb4460c75e8e10fa99ed1d510f23beffb91a5edd6fff3
cites cdi_FETCH-LOGICAL-c302t-d6ed63f0d18f8c2887a1cb4460c75e8e10fa99ed1d510f23beffb91a5edd6fff3
container_end_page A392
container_issue 3
container_start_page A381
container_title Journal of the Electrochemical Society
container_volume 161
creator Gunasekara, Iromie
Mukerjee, Sanjeev
Plichta, Edward J.
Hendrickson, Mary A.
Abraham, K. M.
description We demonstrate that a microelectrode can be used as a diagnostic tool to optimize the properties of electrolytes for non-aqueous Li-air batteries, and to elucidate the influence of ion-conducting salts on O2 reduction reaction mechanisms. Oxygen reduction/evolution reactions on carbon microelectrode have been studied in dimethyl sulfoxide-based electrolytes containing Li+ and tetrabutylammonium((C4H9)4N+) ions. Analysis of chronoamperometric current-time transients of the oxygen reduction reactions (ORR) in the series of tetrabutylammmonium (TBA) electrolytes, TBAPF6, TBAClO4, TBACF3SO3, TBAN(CF3SO2)2 in DMSO revealed that the anion of the salt exerts little influence on oxygen transport. Whereas steady-state ORR currents(sigmoidal-shaped) were observed in TBA-based electrolytes, peak-shaped current-voltage profiles were seen in the electrolytes containing their Li salt counterparts. The latter response results from the combined effects of the electrostatic repulsion of the superoxide intermediate as it is reduced further to peroxide (O22−) at low potentials, and the formation of passivation films at the electrode. Raman spectroscopic data confirmed the formation of Li2O2 and Li2O on the microelectrode surface at different reduction potentials in Li salt solutions. Out of the four lithium electrolytes, namely LiPF6, LiClO4, LiCF3SO3, or LiN(CF3SO2)2 in DMSO, the LiCF3SO3/DMSO solution revealed the most favorable ORR kinetics and the least passivation of the electrode by ORR products.
doi_str_mv 10.1149/2.073403jes
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_073403jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>073403JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-d6ed63f0d18f8c2887a1cb4460c75e8e10fa99ed1d510f23beffb91a5edd6fff3</originalsourceid><addsrcrecordid>eNptjz1PwzAYhC0EEqEw8QeyMSC3fmMnccZSPooUxAKz5divwVFbV7Y78O8JKmJiujvp0emOkGtgcwDRLao5a7lgfMR0QgroRE1bADglBWPAqWhqOCcXKY1TBCnagvAXb2LADZocg8Xy3uuPXUjZm1QGV_Y-f_rDli59LO90zhg9pkty5vQm4dWvzsj748Pbak3716fn1bKnhrMqU9ugbbhjFqSTppKy1WAGIRpm2holAnO669CCrSdb8QGdGzrQNVrbOOf4jNwee6eFKUV0ah_9VscvBUz9_FWV-vs70TdH2oe9GsMh7qZt_5Lfm_xV4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microelectrode Diagnostics of Lithium-Air Batteries</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Gunasekara, Iromie ; Mukerjee, Sanjeev ; Plichta, Edward J. ; Hendrickson, Mary A. ; Abraham, K. M.</creator><creatorcontrib>Gunasekara, Iromie ; Mukerjee, Sanjeev ; Plichta, Edward J. ; Hendrickson, Mary A. ; Abraham, K. M.</creatorcontrib><description>We demonstrate that a microelectrode can be used as a diagnostic tool to optimize the properties of electrolytes for non-aqueous Li-air batteries, and to elucidate the influence of ion-conducting salts on O2 reduction reaction mechanisms. Oxygen reduction/evolution reactions on carbon microelectrode have been studied in dimethyl sulfoxide-based electrolytes containing Li+ and tetrabutylammonium((C4H9)4N+) ions. Analysis of chronoamperometric current-time transients of the oxygen reduction reactions (ORR) in the series of tetrabutylammmonium (TBA) electrolytes, TBAPF6, TBAClO4, TBACF3SO3, TBAN(CF3SO2)2 in DMSO revealed that the anion of the salt exerts little influence on oxygen transport. Whereas steady-state ORR currents(sigmoidal-shaped) were observed in TBA-based electrolytes, peak-shaped current-voltage profiles were seen in the electrolytes containing their Li salt counterparts. The latter response results from the combined effects of the electrostatic repulsion of the superoxide intermediate as it is reduced further to peroxide (O22−) at low potentials, and the formation of passivation films at the electrode. Raman spectroscopic data confirmed the formation of Li2O2 and Li2O on the microelectrode surface at different reduction potentials in Li salt solutions. Out of the four lithium electrolytes, namely LiPF6, LiClO4, LiCF3SO3, or LiN(CF3SO2)2 in DMSO, the LiCF3SO3/DMSO solution revealed the most favorable ORR kinetics and the least passivation of the electrode by ORR products.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.073403jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2014-01, Vol.161 (3), p.A381-A392</ispartof><rights>2014 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-d6ed63f0d18f8c2887a1cb4460c75e8e10fa99ed1d510f23beffb91a5edd6fff3</citedby><cites>FETCH-LOGICAL-c302t-d6ed63f0d18f8c2887a1cb4460c75e8e10fa99ed1d510f23beffb91a5edd6fff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gunasekara, Iromie</creatorcontrib><creatorcontrib>Mukerjee, Sanjeev</creatorcontrib><creatorcontrib>Plichta, Edward J.</creatorcontrib><creatorcontrib>Hendrickson, Mary A.</creatorcontrib><creatorcontrib>Abraham, K. M.</creatorcontrib><title>Microelectrode Diagnostics of Lithium-Air Batteries</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>We demonstrate that a microelectrode can be used as a diagnostic tool to optimize the properties of electrolytes for non-aqueous Li-air batteries, and to elucidate the influence of ion-conducting salts on O2 reduction reaction mechanisms. Oxygen reduction/evolution reactions on carbon microelectrode have been studied in dimethyl sulfoxide-based electrolytes containing Li+ and tetrabutylammonium((C4H9)4N+) ions. Analysis of chronoamperometric current-time transients of the oxygen reduction reactions (ORR) in the series of tetrabutylammmonium (TBA) electrolytes, TBAPF6, TBAClO4, TBACF3SO3, TBAN(CF3SO2)2 in DMSO revealed that the anion of the salt exerts little influence on oxygen transport. Whereas steady-state ORR currents(sigmoidal-shaped) were observed in TBA-based electrolytes, peak-shaped current-voltage profiles were seen in the electrolytes containing their Li salt counterparts. The latter response results from the combined effects of the electrostatic repulsion of the superoxide intermediate as it is reduced further to peroxide (O22−) at low potentials, and the formation of passivation films at the electrode. Raman spectroscopic data confirmed the formation of Li2O2 and Li2O on the microelectrode surface at different reduction potentials in Li salt solutions. Out of the four lithium electrolytes, namely LiPF6, LiClO4, LiCF3SO3, or LiN(CF3SO2)2 in DMSO, the LiCF3SO3/DMSO solution revealed the most favorable ORR kinetics and the least passivation of the electrode by ORR products.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptjz1PwzAYhC0EEqEw8QeyMSC3fmMnccZSPooUxAKz5divwVFbV7Y78O8JKmJiujvp0emOkGtgcwDRLao5a7lgfMR0QgroRE1bADglBWPAqWhqOCcXKY1TBCnagvAXb2LADZocg8Xy3uuPXUjZm1QGV_Y-f_rDli59LO90zhg9pkty5vQm4dWvzsj748Pbak3716fn1bKnhrMqU9ugbbhjFqSTppKy1WAGIRpm2holAnO669CCrSdb8QGdGzrQNVrbOOf4jNwee6eFKUV0ah_9VscvBUz9_FWV-vs70TdH2oe9GsMh7qZt_5Lfm_xV4w</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Gunasekara, Iromie</creator><creator>Mukerjee, Sanjeev</creator><creator>Plichta, Edward J.</creator><creator>Hendrickson, Mary A.</creator><creator>Abraham, K. M.</creator><general>The Electrochemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>Microelectrode Diagnostics of Lithium-Air Batteries</title><author>Gunasekara, Iromie ; Mukerjee, Sanjeev ; Plichta, Edward J. ; Hendrickson, Mary A. ; Abraham, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-d6ed63f0d18f8c2887a1cb4460c75e8e10fa99ed1d510f23beffb91a5edd6fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunasekara, Iromie</creatorcontrib><creatorcontrib>Mukerjee, Sanjeev</creatorcontrib><creatorcontrib>Plichta, Edward J.</creatorcontrib><creatorcontrib>Hendrickson, Mary A.</creatorcontrib><creatorcontrib>Abraham, K. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunasekara, Iromie</au><au>Mukerjee, Sanjeev</au><au>Plichta, Edward J.</au><au>Hendrickson, Mary A.</au><au>Abraham, K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microelectrode Diagnostics of Lithium-Air Batteries</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>161</volume><issue>3</issue><spage>A381</spage><epage>A392</epage><pages>A381-A392</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>We demonstrate that a microelectrode can be used as a diagnostic tool to optimize the properties of electrolytes for non-aqueous Li-air batteries, and to elucidate the influence of ion-conducting salts on O2 reduction reaction mechanisms. Oxygen reduction/evolution reactions on carbon microelectrode have been studied in dimethyl sulfoxide-based electrolytes containing Li+ and tetrabutylammonium((C4H9)4N+) ions. Analysis of chronoamperometric current-time transients of the oxygen reduction reactions (ORR) in the series of tetrabutylammmonium (TBA) electrolytes, TBAPF6, TBAClO4, TBACF3SO3, TBAN(CF3SO2)2 in DMSO revealed that the anion of the salt exerts little influence on oxygen transport. Whereas steady-state ORR currents(sigmoidal-shaped) were observed in TBA-based electrolytes, peak-shaped current-voltage profiles were seen in the electrolytes containing their Li salt counterparts. The latter response results from the combined effects of the electrostatic repulsion of the superoxide intermediate as it is reduced further to peroxide (O22−) at low potentials, and the formation of passivation films at the electrode. Raman spectroscopic data confirmed the formation of Li2O2 and Li2O on the microelectrode surface at different reduction potentials in Li salt solutions. Out of the four lithium electrolytes, namely LiPF6, LiClO4, LiCF3SO3, or LiN(CF3SO2)2 in DMSO, the LiCF3SO3/DMSO solution revealed the most favorable ORR kinetics and the least passivation of the electrode by ORR products.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.073403jes</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2014-01, Vol.161 (3), p.A381-A392
issn 0013-4651
1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_073403jes
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Microelectrode Diagnostics of Lithium-Air Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microelectrode%20Diagnostics%20of%20Lithium-Air%20Batteries&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Gunasekara,%20Iromie&rft.date=2014-01-01&rft.volume=161&rft.issue=3&rft.spage=A381&rft.epage=A392&rft.pages=A381-A392&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.073403jes&rft_dat=%3Ciop_cross%3E073403JES%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-d6ed63f0d18f8c2887a1cb4460c75e8e10fa99ed1d510f23beffb91a5edd6fff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true