Loading…

The Impact of Potential Cycling on PEMFC Durability

Voltage cycling is one of the most damaging stressors for automotive PEMFC. Understanding of the effects of voltage cycling on performance degradation is crucial to improve PEMFC durability for automotive applications. This study focuses on the interaction between upper potential limit (UPL) and low...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2013-01, Vol.160 (8), p.F840-F847
Main Authors: Zhang, Hao, Haas, Herwig, Hu, Jingwei, Kundu, Sumit, Davis, Mike, Chuy, Carmen
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Voltage cycling is one of the most damaging stressors for automotive PEMFC. Understanding of the effects of voltage cycling on performance degradation is crucial to improve PEMFC durability for automotive applications. This study focuses on the interaction between upper potential limit (UPL) and lower potential limit (LPL) on the stability of PEMFC. A well-defined peak of degradation rate is observed when the LPL is ∼0.8 V with UPL of 1.35 V. A mathematical model was developed to understand the observed relationship between degradation rate and lower potential. Modeling results suggest that when cycling to a lower potential of ∼0.8 V, almost all dissolved Pt migrate from the catalyst layer to the membrane with negligible re-deposition, resulting in a peak of degradation rate at ∼0.8 V. The amount of Pt in the membrane (PITM) measured at end of life (EOL) samples correlates with degradation rates and is in agreement with modeling results.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.083308jes