Loading…
Highly Flexible and Durable Graphene Hybrid Film Electrode Modified with Aminated β-Cyclodextrin for Supercapacitor
The aminated beta-cyclodextrin (β-CD-N) molecules were first used to modify graphene for fabricating the hybrid film electrode (G/β-CD-N) using a method combining mild water bath heat-treatment and vacuum filtration. As compared with pure graphene film (G) and beta-cyclodextrin (β-CD) modified graph...
Saved in:
Published in: | Journal of the Electrochemical Society 2019, Vol.166 (8), p.A1636-A1643 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aminated beta-cyclodextrin (β-CD-N) molecules were first used to modify graphene for fabricating the hybrid film electrode (G/β-CD-N) using a method combining mild water bath heat-treatment and vacuum filtration. As compared with pure graphene film (G) and beta-cyclodextrin (β-CD) modified graphene film (G/β-CD), the prepared G/β-CD-N hybrid film exhibits better hydrophilic property, thermal stability and higher mechanical flexibility. Particularly, the G/β-CD-N hybrid film has a remarkably high areal specific capacitance (614 mF cm−2 at 0.5 mA cm−2), good mechanical flexibility (maintaining 98.2% for 1000 bending/unbending cycles) and long-term cycle stability (maintaining 96.8% for 10000 charge/discharge cycles). Moreover, the assembled G/β-CD-N based flexible and symmetric all-solid-state supercapacitor shows an excellent volumetric specific capacitance of 22.53 F cm−3 at 0.5 mA cm−2 and a high energy density of 3.13 mWh cm−3 at a power density of 0.014 W cm−3. The high comprehensive performances of the developed hybrid film electrodes can be ascribed to the combined effects of β-CD molecules and the amination process. This work provides a new approach for the fabrication of flexible supercapacitor with high performance. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.1031908jes |