Loading…
Operational advantage of basis-independent quantum coherence
In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation i...
Saved in:
Published in: | Europhysics letters 2019-03, Vol.125 (5), p.50005 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3 |
container_end_page | |
container_issue | 5 |
container_start_page | 50005 |
container_title | Europhysics letters |
container_volume | 125 |
creator | Ma, Zhi-Hao Cui, Jian Cao, Zhu Fei, Shao-Ming Vedral, Vlatko Byrnes, Tim Radhakrishnan, Chandrashekar |
description | In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation is that the incoherent states are intrinsically basis-dependent, which makes the amount of coherence also a basis-dependent quantity. Basis-independent measures have recently been proposed where the incoherent state is taken as the maximally mixed state. We show that this is the only possible choice of reference incoherent state, without modifying the original definition of coherence. We find a relation between the two formulations by defining a contribution to the coherence due to the basis choice. The hierarchical relationship between quantum coherence and the various quantum correlations is explored in detail. Finally, we illustrate some operational uses of the basis-independent quantum coherence in quantum information theory tasks. |
doi_str_mv | 10.1209/0295-5075/125/50005 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1209_0295_5075_125_50005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110089276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai8FD55qJ02TpuBFdv2Cxb0oegtpO9Guu203aUX_vSmV9SJe5oN53pnhJeSUwgWNIYsgznjIIeURjXnEAYDvkQmNpQgTyZN9MtkRh-TIuRUApZKKCblctmh1VzW1Xge6_NB1p18xaEyQa1e5sKpLbNGHugu2vZ_2m6Bo3tBiXeAxOTB67fDkJ0_J08314-wuXCxv72dXi7BgMu1CzjjHQlKaiZKKmFKTM8pSYKXOjMhMLABYInjMTcmE4ZrniJhpiXlSYJqzKTkb97a22fboOrVqeus_dopRCiCzOBWeYiNV2MY5i0a1ttpo-6UoqMEmNZigBhN8OxTeJq8KR1XlOvzcSbR9VyJlHpXwrOYvbDYHDurB89EP37S_b_x_4fwPBbbrkRkp1ZaGfQNYM4N4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110089276</pqid></control><display><type>article</type><title>Operational advantage of basis-independent quantum coherence</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ma, Zhi-Hao ; Cui, Jian ; Cao, Zhu ; Fei, Shao-Ming ; Vedral, Vlatko ; Byrnes, Tim ; Radhakrishnan, Chandrashekar</creator><creatorcontrib>Ma, Zhi-Hao ; Cui, Jian ; Cao, Zhu ; Fei, Shao-Ming ; Vedral, Vlatko ; Byrnes, Tim ; Radhakrishnan, Chandrashekar</creatorcontrib><description>In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation is that the incoherent states are intrinsically basis-dependent, which makes the amount of coherence also a basis-dependent quantity. Basis-independent measures have recently been proposed where the incoherent state is taken as the maximally mixed state. We show that this is the only possible choice of reference incoherent state, without modifying the original definition of coherence. We find a relation between the two formulations by defining a contribution to the coherence due to the basis choice. The hierarchical relationship between quantum coherence and the various quantum correlations is explored in detail. Finally, we illustrate some operational uses of the basis-independent quantum coherence in quantum information theory tasks.</description><identifier>ISSN: 0295-5075</identifier><identifier>ISSN: 1286-4854</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/125/50005</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>03.65.Ta ; 03.67.-a ; Coherence ; Information theory ; Quantum phenomena</subject><ispartof>Europhysics letters, 2019-03, Vol.125 (5), p.50005</ispartof><rights>Copyright © EPLA, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3</citedby><cites>FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ma, Zhi-Hao</creatorcontrib><creatorcontrib>Cui, Jian</creatorcontrib><creatorcontrib>Cao, Zhu</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Vedral, Vlatko</creatorcontrib><creatorcontrib>Byrnes, Tim</creatorcontrib><creatorcontrib>Radhakrishnan, Chandrashekar</creatorcontrib><title>Operational advantage of basis-independent quantum coherence</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation is that the incoherent states are intrinsically basis-dependent, which makes the amount of coherence also a basis-dependent quantity. Basis-independent measures have recently been proposed where the incoherent state is taken as the maximally mixed state. We show that this is the only possible choice of reference incoherent state, without modifying the original definition of coherence. We find a relation between the two formulations by defining a contribution to the coherence due to the basis choice. The hierarchical relationship between quantum coherence and the various quantum correlations is explored in detail. Finally, we illustrate some operational uses of the basis-independent quantum coherence in quantum information theory tasks.</description><subject>03.65.Ta</subject><subject>03.67.-a</subject><subject>Coherence</subject><subject>Information theory</subject><subject>Quantum phenomena</subject><issn>0295-5075</issn><issn>1286-4854</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai8FD55qJ02TpuBFdv2Cxb0oegtpO9Guu203aUX_vSmV9SJe5oN53pnhJeSUwgWNIYsgznjIIeURjXnEAYDvkQmNpQgTyZN9MtkRh-TIuRUApZKKCblctmh1VzW1Xge6_NB1p18xaEyQa1e5sKpLbNGHugu2vZ_2m6Bo3tBiXeAxOTB67fDkJ0_J08314-wuXCxv72dXi7BgMu1CzjjHQlKaiZKKmFKTM8pSYKXOjMhMLABYInjMTcmE4ZrniJhpiXlSYJqzKTkb97a22fboOrVqeus_dopRCiCzOBWeYiNV2MY5i0a1ttpo-6UoqMEmNZigBhN8OxTeJq8KR1XlOvzcSbR9VyJlHpXwrOYvbDYHDurB89EP37S_b_x_4fwPBbbrkRkp1ZaGfQNYM4N4</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Ma, Zhi-Hao</creator><creator>Cui, Jian</creator><creator>Cao, Zhu</creator><creator>Fei, Shao-Ming</creator><creator>Vedral, Vlatko</creator><creator>Byrnes, Tim</creator><creator>Radhakrishnan, Chandrashekar</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190301</creationdate><title>Operational advantage of basis-independent quantum coherence</title><author>Ma, Zhi-Hao ; Cui, Jian ; Cao, Zhu ; Fei, Shao-Ming ; Vedral, Vlatko ; Byrnes, Tim ; Radhakrishnan, Chandrashekar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>03.65.Ta</topic><topic>03.67.-a</topic><topic>Coherence</topic><topic>Information theory</topic><topic>Quantum phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhi-Hao</creatorcontrib><creatorcontrib>Cui, Jian</creatorcontrib><creatorcontrib>Cao, Zhu</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Vedral, Vlatko</creatorcontrib><creatorcontrib>Byrnes, Tim</creatorcontrib><creatorcontrib>Radhakrishnan, Chandrashekar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhi-Hao</au><au>Cui, Jian</au><au>Cao, Zhu</au><au>Fei, Shao-Ming</au><au>Vedral, Vlatko</au><au>Byrnes, Tim</au><au>Radhakrishnan, Chandrashekar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational advantage of basis-independent quantum coherence</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>125</volume><issue>5</issue><spage>50005</spage><pages>50005-</pages><issn>0295-5075</issn><issn>1286-4854</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation is that the incoherent states are intrinsically basis-dependent, which makes the amount of coherence also a basis-dependent quantity. Basis-independent measures have recently been proposed where the incoherent state is taken as the maximally mixed state. We show that this is the only possible choice of reference incoherent state, without modifying the original definition of coherence. We find a relation between the two formulations by defining a contribution to the coherence due to the basis choice. The hierarchical relationship between quantum coherence and the various quantum correlations is explored in detail. Finally, we illustrate some operational uses of the basis-independent quantum coherence in quantum information theory tasks.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/125/50005</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2019-03, Vol.125 (5), p.50005 |
issn | 0295-5075 1286-4854 1286-4854 |
language | eng |
recordid | cdi_iop_journals_10_1209_0295_5075_125_50005 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | 03.65.Ta 03.67.-a Coherence Information theory Quantum phenomena |
title | Operational advantage of basis-independent quantum coherence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20advantage%20of%20basis-independent%20quantum%20coherence&rft.jtitle=Europhysics%20letters&rft.au=Ma,%20Zhi-Hao&rft.date=2019-03-01&rft.volume=125&rft.issue=5&rft.spage=50005&rft.pages=50005-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/125/50005&rft_dat=%3Cproquest_iop_j%3E3110089276%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110089276&rft_id=info:pmid/&rfr_iscdi=true |