Loading…

Operational advantage of basis-independent quantum coherence

In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation i...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2019-03, Vol.125 (5), p.50005
Main Authors: Ma, Zhi-Hao, Cui, Jian, Cao, Zhu, Fei, Shao-Ming, Vedral, Vlatko, Byrnes, Tim, Radhakrishnan, Chandrashekar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3
cites cdi_FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3
container_end_page
container_issue 5
container_start_page 50005
container_title Europhysics letters
container_volume 125
creator Ma, Zhi-Hao
Cui, Jian
Cao, Zhu
Fei, Shao-Ming
Vedral, Vlatko
Byrnes, Tim
Radhakrishnan, Chandrashekar
description In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation is that the incoherent states are intrinsically basis-dependent, which makes the amount of coherence also a basis-dependent quantity. Basis-independent measures have recently been proposed where the incoherent state is taken as the maximally mixed state. We show that this is the only possible choice of reference incoherent state, without modifying the original definition of coherence. We find a relation between the two formulations by defining a contribution to the coherence due to the basis choice. The hierarchical relationship between quantum coherence and the various quantum correlations is explored in detail. Finally, we illustrate some operational uses of the basis-independent quantum coherence in quantum information theory tasks.
doi_str_mv 10.1209/0295-5075/125/50005
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1209_0295_5075_125_50005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110089276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai8FD55qJ02TpuBFdv2Cxb0oegtpO9Guu203aUX_vSmV9SJe5oN53pnhJeSUwgWNIYsgznjIIeURjXnEAYDvkQmNpQgTyZN9MtkRh-TIuRUApZKKCblctmh1VzW1Xge6_NB1p18xaEyQa1e5sKpLbNGHugu2vZ_2m6Bo3tBiXeAxOTB67fDkJ0_J08314-wuXCxv72dXi7BgMu1CzjjHQlKaiZKKmFKTM8pSYKXOjMhMLABYInjMTcmE4ZrniJhpiXlSYJqzKTkb97a22fboOrVqeus_dopRCiCzOBWeYiNV2MY5i0a1ttpo-6UoqMEmNZigBhN8OxTeJq8KR1XlOvzcSbR9VyJlHpXwrOYvbDYHDurB89EP37S_b_x_4fwPBbbrkRkp1ZaGfQNYM4N4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110089276</pqid></control><display><type>article</type><title>Operational advantage of basis-independent quantum coherence</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ma, Zhi-Hao ; Cui, Jian ; Cao, Zhu ; Fei, Shao-Ming ; Vedral, Vlatko ; Byrnes, Tim ; Radhakrishnan, Chandrashekar</creator><creatorcontrib>Ma, Zhi-Hao ; Cui, Jian ; Cao, Zhu ; Fei, Shao-Ming ; Vedral, Vlatko ; Byrnes, Tim ; Radhakrishnan, Chandrashekar</creatorcontrib><description>In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation is that the incoherent states are intrinsically basis-dependent, which makes the amount of coherence also a basis-dependent quantity. Basis-independent measures have recently been proposed where the incoherent state is taken as the maximally mixed state. We show that this is the only possible choice of reference incoherent state, without modifying the original definition of coherence. We find a relation between the two formulations by defining a contribution to the coherence due to the basis choice. The hierarchical relationship between quantum coherence and the various quantum correlations is explored in detail. Finally, we illustrate some operational uses of the basis-independent quantum coherence in quantum information theory tasks.</description><identifier>ISSN: 0295-5075</identifier><identifier>ISSN: 1286-4854</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/125/50005</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>03.65.Ta ; 03.67.-a ; Coherence ; Information theory ; Quantum phenomena</subject><ispartof>Europhysics letters, 2019-03, Vol.125 (5), p.50005</ispartof><rights>Copyright © EPLA, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3</citedby><cites>FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ma, Zhi-Hao</creatorcontrib><creatorcontrib>Cui, Jian</creatorcontrib><creatorcontrib>Cao, Zhu</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Vedral, Vlatko</creatorcontrib><creatorcontrib>Byrnes, Tim</creatorcontrib><creatorcontrib>Radhakrishnan, Chandrashekar</creatorcontrib><title>Operational advantage of basis-independent quantum coherence</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation is that the incoherent states are intrinsically basis-dependent, which makes the amount of coherence also a basis-dependent quantity. Basis-independent measures have recently been proposed where the incoherent state is taken as the maximally mixed state. We show that this is the only possible choice of reference incoherent state, without modifying the original definition of coherence. We find a relation between the two formulations by defining a contribution to the coherence due to the basis choice. The hierarchical relationship between quantum coherence and the various quantum correlations is explored in detail. Finally, we illustrate some operational uses of the basis-independent quantum coherence in quantum information theory tasks.</description><subject>03.65.Ta</subject><subject>03.67.-a</subject><subject>Coherence</subject><subject>Information theory</subject><subject>Quantum phenomena</subject><issn>0295-5075</issn><issn>1286-4854</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai8FD55qJ02TpuBFdv2Cxb0oegtpO9Guu203aUX_vSmV9SJe5oN53pnhJeSUwgWNIYsgznjIIeURjXnEAYDvkQmNpQgTyZN9MtkRh-TIuRUApZKKCblctmh1VzW1Xge6_NB1p18xaEyQa1e5sKpLbNGHugu2vZ_2m6Bo3tBiXeAxOTB67fDkJ0_J08314-wuXCxv72dXi7BgMu1CzjjHQlKaiZKKmFKTM8pSYKXOjMhMLABYInjMTcmE4ZrniJhpiXlSYJqzKTkb97a22fboOrVqeus_dopRCiCzOBWeYiNV2MY5i0a1ttpo-6UoqMEmNZigBhN8OxTeJq8KR1XlOvzcSbR9VyJlHpXwrOYvbDYHDurB89EP37S_b_x_4fwPBbbrkRkp1ZaGfQNYM4N4</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Ma, Zhi-Hao</creator><creator>Cui, Jian</creator><creator>Cao, Zhu</creator><creator>Fei, Shao-Ming</creator><creator>Vedral, Vlatko</creator><creator>Byrnes, Tim</creator><creator>Radhakrishnan, Chandrashekar</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190301</creationdate><title>Operational advantage of basis-independent quantum coherence</title><author>Ma, Zhi-Hao ; Cui, Jian ; Cao, Zhu ; Fei, Shao-Ming ; Vedral, Vlatko ; Byrnes, Tim ; Radhakrishnan, Chandrashekar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>03.65.Ta</topic><topic>03.67.-a</topic><topic>Coherence</topic><topic>Information theory</topic><topic>Quantum phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhi-Hao</creatorcontrib><creatorcontrib>Cui, Jian</creatorcontrib><creatorcontrib>Cao, Zhu</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Vedral, Vlatko</creatorcontrib><creatorcontrib>Byrnes, Tim</creatorcontrib><creatorcontrib>Radhakrishnan, Chandrashekar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhi-Hao</au><au>Cui, Jian</au><au>Cao, Zhu</au><au>Fei, Shao-Ming</au><au>Vedral, Vlatko</au><au>Byrnes, Tim</au><au>Radhakrishnan, Chandrashekar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational advantage of basis-independent quantum coherence</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>125</volume><issue>5</issue><spage>50005</spage><pages>50005-</pages><issn>0295-5075</issn><issn>1286-4854</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>In the quantitative theory of quantum coherence, the amount of coherence is defined as the distance between the given state to the closest incoherent state. The set of incoherent states is conventionally defined as any state with a diagonal density matrix. One of the objections to this formulation is that the incoherent states are intrinsically basis-dependent, which makes the amount of coherence also a basis-dependent quantity. Basis-independent measures have recently been proposed where the incoherent state is taken as the maximally mixed state. We show that this is the only possible choice of reference incoherent state, without modifying the original definition of coherence. We find a relation between the two formulations by defining a contribution to the coherence due to the basis choice. The hierarchical relationship between quantum coherence and the various quantum correlations is explored in detail. Finally, we illustrate some operational uses of the basis-independent quantum coherence in quantum information theory tasks.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/125/50005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2019-03, Vol.125 (5), p.50005
issn 0295-5075
1286-4854
1286-4854
language eng
recordid cdi_iop_journals_10_1209_0295_5075_125_50005
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 03.65.Ta
03.67.-a
Coherence
Information theory
Quantum phenomena
title Operational advantage of basis-independent quantum coherence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20advantage%20of%20basis-independent%20quantum%20coherence&rft.jtitle=Europhysics%20letters&rft.au=Ma,%20Zhi-Hao&rft.date=2019-03-01&rft.volume=125&rft.issue=5&rft.spage=50005&rft.pages=50005-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/125/50005&rft_dat=%3Cproquest_iop_j%3E3110089276%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-5355ec81196d16211fb313703da9f69f2600346525fd36f5a5beee9a8eb4ce7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110089276&rft_id=info:pmid/&rfr_iscdi=true