Loading…

Limitations of curvature-induced rigidity: How a curved strip buckles under gravity

The preference of thin flat sheets to bend rather than stretch, combined with results from geometry, mean that changes in a thin sheet's Gaussian curvature are prohibitively expensive. As a result, an imposed curvature in one principal direction inhibits bending in the other: the so-called curv...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2019-07, Vol.127 (1), p.14001
Main Authors: Taffetani, M., Box, F., Neveu, A., Vella, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-9f4f3c940cc7b8170e90e85271ffb237cae98d94ab587d06320ce724cb60fc543
cites cdi_FETCH-LOGICAL-c453t-9f4f3c940cc7b8170e90e85271ffb237cae98d94ab587d06320ce724cb60fc543
container_end_page
container_issue 1
container_start_page 14001
container_title Europhysics letters
container_volume 127
creator Taffetani, M.
Box, F.
Neveu, A.
Vella, D.
description The preference of thin flat sheets to bend rather than stretch, combined with results from geometry, mean that changes in a thin sheet's Gaussian curvature are prohibitively expensive. As a result, an imposed curvature in one principal direction inhibits bending in the other: the so-called curvature-induced rigidity. Here, we study the buckling behaviour of a rectangular strip of finite thickness held horizontally in a gravitational field, but with a transverse curvature imposed at one end. The finite thickness of the sheet limits the efficacy of curvature-induced rigidity in two ways: i) finite bending stiffness acts to "uncurve" the sheet, even if this costs some stretching energy, and ii) for sufficiently long strips, finite weight deforms the strip downwards, releasing some of its gravitational potential energy. We find the critical imposed curvature required to prevent buckling (or, equivalently, to rigidify the strip), determining the dependence on geometrical and constitutive parameters, as well as describing the buckled shape of the strip well beyond the threshold for buckling. In doing so, we quantify the intuitive understanding of curvature-induced rigidity that we gain from curving the crust of a slice of pizza to prevent it from drooping downwards as we eat.
doi_str_mv 10.1209/0295-5075/127/14001
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1209_0295_5075_127_14001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110114697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-9f4f3c940cc7b8170e90e85271ffb237cae98d94ab587d06320ce724cb60fc543</originalsourceid><addsrcrecordid>eNp90E1PwyAcBnBiNHFOP4GXJh481UKhBbyZRTfjEmM245FQCgt7a4V2um8vW5d5MZ4I5PfwhweAawTvUAp5AlOexRmkWYJSmiACIToBPZSyPCYsI6egdxTn4ML7eQCIobwHJmO7so1sbLX2UWUi1bqNbFqnY7suW6XLyNmZLW2zvY9G1Vck9yIc-8bZOipatVhqH7XrUrto5uQmyEtwZuTS66vD2gfvT4_TwSgevw6fBw_jWJEMNzE3xGDFCVSKFgxRqDnULEspMqZIMVVSc1ZyIouM0RLmOIVK05SoIodGZQT3wU13b-2qz1b7Rsyr1q3DSIERCj8kOadB4U4pV3nvtBG1syvptgJBsWtP7LoRu27Clop9eyEVdynrG_19jEi3EDnFgTL4ISZsOnjD9EUMg08Ovqp_n_H_hNs_ErpedqZToi4N_gFo1oxJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110114697</pqid></control><display><type>article</type><title>Limitations of curvature-induced rigidity: How a curved strip buckles under gravity</title><source>Institute of Physics</source><creator>Taffetani, M. ; Box, F. ; Neveu, A. ; Vella, D.</creator><creatorcontrib>Taffetani, M. ; Box, F. ; Neveu, A. ; Vella, D.</creatorcontrib><description>The preference of thin flat sheets to bend rather than stretch, combined with results from geometry, mean that changes in a thin sheet's Gaussian curvature are prohibitively expensive. As a result, an imposed curvature in one principal direction inhibits bending in the other: the so-called curvature-induced rigidity. Here, we study the buckling behaviour of a rectangular strip of finite thickness held horizontally in a gravitational field, but with a transverse curvature imposed at one end. The finite thickness of the sheet limits the efficacy of curvature-induced rigidity in two ways: i) finite bending stiffness acts to "uncurve" the sheet, even if this costs some stretching energy, and ii) for sufficiently long strips, finite weight deforms the strip downwards, releasing some of its gravitational potential energy. We find the critical imposed curvature required to prevent buckling (or, equivalently, to rigidify the strip), determining the dependence on geometrical and constitutive parameters, as well as describing the buckled shape of the strip well beyond the threshold for buckling. In doing so, we quantify the intuitive understanding of curvature-induced rigidity that we gain from curving the crust of a slice of pizza to prevent it from drooping downwards as we eat.</description><identifier>ISSN: 0295-5075</identifier><identifier>ISSN: 1286-4854</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/127/14001</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>46.32.+x ; 46.70.De ; 62.20.D ; Bending ; Buckling ; Curvature ; Energy costs ; Gravitational fields ; Potential energy ; Rigidity ; Strip ; Thickness</subject><ispartof>Europhysics letters, 2019-07, Vol.127 (1), p.14001</ispartof><rights>Copyright © EPLA, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-9f4f3c940cc7b8170e90e85271ffb237cae98d94ab587d06320ce724cb60fc543</citedby><cites>FETCH-LOGICAL-c453t-9f4f3c940cc7b8170e90e85271ffb237cae98d94ab587d06320ce724cb60fc543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Taffetani, M.</creatorcontrib><creatorcontrib>Box, F.</creatorcontrib><creatorcontrib>Neveu, A.</creatorcontrib><creatorcontrib>Vella, D.</creatorcontrib><title>Limitations of curvature-induced rigidity: How a curved strip buckles under gravity</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>The preference of thin flat sheets to bend rather than stretch, combined with results from geometry, mean that changes in a thin sheet's Gaussian curvature are prohibitively expensive. As a result, an imposed curvature in one principal direction inhibits bending in the other: the so-called curvature-induced rigidity. Here, we study the buckling behaviour of a rectangular strip of finite thickness held horizontally in a gravitational field, but with a transverse curvature imposed at one end. The finite thickness of the sheet limits the efficacy of curvature-induced rigidity in two ways: i) finite bending stiffness acts to "uncurve" the sheet, even if this costs some stretching energy, and ii) for sufficiently long strips, finite weight deforms the strip downwards, releasing some of its gravitational potential energy. We find the critical imposed curvature required to prevent buckling (or, equivalently, to rigidify the strip), determining the dependence on geometrical and constitutive parameters, as well as describing the buckled shape of the strip well beyond the threshold for buckling. In doing so, we quantify the intuitive understanding of curvature-induced rigidity that we gain from curving the crust of a slice of pizza to prevent it from drooping downwards as we eat.</description><subject>46.32.+x</subject><subject>46.70.De</subject><subject>62.20.D</subject><subject>Bending</subject><subject>Buckling</subject><subject>Curvature</subject><subject>Energy costs</subject><subject>Gravitational fields</subject><subject>Potential energy</subject><subject>Rigidity</subject><subject>Strip</subject><subject>Thickness</subject><issn>0295-5075</issn><issn>1286-4854</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1PwyAcBnBiNHFOP4GXJh481UKhBbyZRTfjEmM245FQCgt7a4V2um8vW5d5MZ4I5PfwhweAawTvUAp5AlOexRmkWYJSmiACIToBPZSyPCYsI6egdxTn4ML7eQCIobwHJmO7so1sbLX2UWUi1bqNbFqnY7suW6XLyNmZLW2zvY9G1Vck9yIc-8bZOipatVhqH7XrUrto5uQmyEtwZuTS66vD2gfvT4_TwSgevw6fBw_jWJEMNzE3xGDFCVSKFgxRqDnULEspMqZIMVVSc1ZyIouM0RLmOIVK05SoIodGZQT3wU13b-2qz1b7Rsyr1q3DSIERCj8kOadB4U4pV3nvtBG1syvptgJBsWtP7LoRu27Clop9eyEVdynrG_19jEi3EDnFgTL4ISZsOnjD9EUMg08Ovqp_n_H_hNs_ErpedqZToi4N_gFo1oxJ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Taffetani, M.</creator><creator>Box, F.</creator><creator>Neveu, A.</creator><creator>Vella, D.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190701</creationdate><title>Limitations of curvature-induced rigidity: How a curved strip buckles under gravity</title><author>Taffetani, M. ; Box, F. ; Neveu, A. ; Vella, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-9f4f3c940cc7b8170e90e85271ffb237cae98d94ab587d06320ce724cb60fc543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>46.32.+x</topic><topic>46.70.De</topic><topic>62.20.D</topic><topic>Bending</topic><topic>Buckling</topic><topic>Curvature</topic><topic>Energy costs</topic><topic>Gravitational fields</topic><topic>Potential energy</topic><topic>Rigidity</topic><topic>Strip</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taffetani, M.</creatorcontrib><creatorcontrib>Box, F.</creatorcontrib><creatorcontrib>Neveu, A.</creatorcontrib><creatorcontrib>Vella, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taffetani, M.</au><au>Box, F.</au><au>Neveu, A.</au><au>Vella, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations of curvature-induced rigidity: How a curved strip buckles under gravity</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>127</volume><issue>1</issue><spage>14001</spage><pages>14001-</pages><issn>0295-5075</issn><issn>1286-4854</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>The preference of thin flat sheets to bend rather than stretch, combined with results from geometry, mean that changes in a thin sheet's Gaussian curvature are prohibitively expensive. As a result, an imposed curvature in one principal direction inhibits bending in the other: the so-called curvature-induced rigidity. Here, we study the buckling behaviour of a rectangular strip of finite thickness held horizontally in a gravitational field, but with a transverse curvature imposed at one end. The finite thickness of the sheet limits the efficacy of curvature-induced rigidity in two ways: i) finite bending stiffness acts to "uncurve" the sheet, even if this costs some stretching energy, and ii) for sufficiently long strips, finite weight deforms the strip downwards, releasing some of its gravitational potential energy. We find the critical imposed curvature required to prevent buckling (or, equivalently, to rigidify the strip), determining the dependence on geometrical and constitutive parameters, as well as describing the buckled shape of the strip well beyond the threshold for buckling. In doing so, we quantify the intuitive understanding of curvature-induced rigidity that we gain from curving the crust of a slice of pizza to prevent it from drooping downwards as we eat.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/127/14001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2019-07, Vol.127 (1), p.14001
issn 0295-5075
1286-4854
1286-4854
language eng
recordid cdi_iop_journals_10_1209_0295_5075_127_14001
source Institute of Physics
subjects 46.32.+x
46.70.De
62.20.D
Bending
Buckling
Curvature
Energy costs
Gravitational fields
Potential energy
Rigidity
Strip
Thickness
title Limitations of curvature-induced rigidity: How a curved strip buckles under gravity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20of%20curvature-induced%20rigidity:%20How%20a%20curved%20strip%20buckles%20under%20gravity&rft.jtitle=Europhysics%20letters&rft.au=Taffetani,%20M.&rft.date=2019-07-01&rft.volume=127&rft.issue=1&rft.spage=14001&rft.pages=14001-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/127/14001&rft_dat=%3Cproquest_iop_j%3E3110114697%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-9f4f3c940cc7b8170e90e85271ffb237cae98d94ab587d06320ce724cb60fc543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110114697&rft_id=info:pmid/&rfr_iscdi=true