Loading…
Numerical simulation of the piezoresistive effect of βGa2O3 in the direction
β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates t...
Saved in:
Published in: | Japanese Journal of Applied Physics 2021-06, Vol.60 (SC) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | SC |
container_start_page | |
container_title | Japanese Journal of Applied Physics |
container_volume | 60 |
creator | Takahashi, Naoki Sugiura, Takaya Sakota, Ryohei Nakano, Nobuhiko |
description | β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates the piezoresistive coefficient of β-Ga2O3 in the direction using a mechanical stress simulator and a device simulator, which includes our piezoresistive effect model. In this study, the piezoresistive effect model and simulation method are applied to β-Ga2O3 for the first time. The piezoresistor model of β-Ga2O3 is simulated to evaluate the piezoresistive coefficient of β-Ga2O3. The experimentally obtained gauge factor with and without the contact effect is −5.8 and −3.6, respectively. The piezoresistive coefficient with and without the contact effect is −2.0 × 10−11 Pa−1 and −1.2 × 10−11 Pa−1, respectively. The piezoresistive coefficient is used to evaluate the piezoresistive effect at 1000 °C through thermal analysis. |
doi_str_mv | 10.35848/1347-4065/abe7ff |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_35848_1347_4065_abe7ff</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499085532</sourcerecordid><originalsourceid>FETCH-LOGICAL-i185t-36946543dff55be488a4225ac1af5e3ee2edc17b919c8ddfee35f6a61392b02a3</originalsourceid><addsrcrecordid>eNptkM9KxDAQxoMouK4-gLeCJw9187dNjlJ0Fap7UM8hbSeYstvWpvXgY_kgPpPpVvQiDAwz32_mgw-hc4KvmJBcrgjjacxxIlamgNTaA7T4XR2iBcaUxFxReoxOvK_DmAhOFujhcdxB70qzjbzbjVszuLaJWhsNrxB1Dj7aHrzzg3uHCKyFcpjEr8-1oRsWuWbPVa4PQjg8RUfWbD2c_fQlerm9ec7u4nyzvs-u89gRKYaYJYoHe1ZZK0QBXErDKRWmJMYKYAAUqpKkhSKqlFVlAZiwiUkIU7TA1LAlupj_dn37NoIfdN2OfRMsNeVKYSkEo4GKZ8q13R9AsN4npqd49BSPnhML_OU_fF2bTidYP2WhshwL3VWWfQONCm59</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499085532</pqid></control><display><type>article</type><title>Numerical simulation of the piezoresistive effect of βGa2O3 in the direction</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics</source><creator>Takahashi, Naoki ; Sugiura, Takaya ; Sakota, Ryohei ; Nakano, Nobuhiko</creator><creatorcontrib>Takahashi, Naoki ; Sugiura, Takaya ; Sakota, Ryohei ; Nakano, Nobuhiko</creatorcontrib><description>β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates the piezoresistive coefficient of β-Ga2O3 in the direction using a mechanical stress simulator and a device simulator, which includes our piezoresistive effect model. In this study, the piezoresistive effect model and simulation method are applied to β-Ga2O3 for the first time. The piezoresistor model of β-Ga2O3 is simulated to evaluate the piezoresistive coefficient of β-Ga2O3. The experimentally obtained gauge factor with and without the contact effect is −5.8 and −3.6, respectively. The piezoresistive coefficient with and without the contact effect is −2.0 × 10−11 Pa−1 and −1.2 × 10−11 Pa−1, respectively. The piezoresistive coefficient is used to evaluate the piezoresistive effect at 1000 °C through thermal analysis.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/abe7ff</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Coefficients ; Gallium oxide ; Gallium oxides ; Mathematical models ; Mechanical stress sensor ; MEMS ; Numerical simulation ; Piezoresistive effect ; Simulation ; Thermal analysis ; Wide bandgap semiconductor</subject><ispartof>Japanese Journal of Applied Physics, 2021-06, Vol.60 (SC)</ispartof><rights>2021 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6327-2121 ; 0000-0002-2680-386X ; 0000-0001-8427-1227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/abe7ff/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,53840</link.rule.ids></links><search><creatorcontrib>Takahashi, Naoki</creatorcontrib><creatorcontrib>Sugiura, Takaya</creatorcontrib><creatorcontrib>Sakota, Ryohei</creatorcontrib><creatorcontrib>Nakano, Nobuhiko</creatorcontrib><title>Numerical simulation of the piezoresistive effect of βGa2O3 in the direction</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates the piezoresistive coefficient of β-Ga2O3 in the direction using a mechanical stress simulator and a device simulator, which includes our piezoresistive effect model. In this study, the piezoresistive effect model and simulation method are applied to β-Ga2O3 for the first time. The piezoresistor model of β-Ga2O3 is simulated to evaluate the piezoresistive coefficient of β-Ga2O3. The experimentally obtained gauge factor with and without the contact effect is −5.8 and −3.6, respectively. The piezoresistive coefficient with and without the contact effect is −2.0 × 10−11 Pa−1 and −1.2 × 10−11 Pa−1, respectively. The piezoresistive coefficient is used to evaluate the piezoresistive effect at 1000 °C through thermal analysis.</description><subject>Coefficients</subject><subject>Gallium oxide</subject><subject>Gallium oxides</subject><subject>Mathematical models</subject><subject>Mechanical stress sensor</subject><subject>MEMS</subject><subject>Numerical simulation</subject><subject>Piezoresistive effect</subject><subject>Simulation</subject><subject>Thermal analysis</subject><subject>Wide bandgap semiconductor</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkM9KxDAQxoMouK4-gLeCJw9187dNjlJ0Fap7UM8hbSeYstvWpvXgY_kgPpPpVvQiDAwz32_mgw-hc4KvmJBcrgjjacxxIlamgNTaA7T4XR2iBcaUxFxReoxOvK_DmAhOFujhcdxB70qzjbzbjVszuLaJWhsNrxB1Dj7aHrzzg3uHCKyFcpjEr8-1oRsWuWbPVa4PQjg8RUfWbD2c_fQlerm9ec7u4nyzvs-u89gRKYaYJYoHe1ZZK0QBXErDKRWmJMYKYAAUqpKkhSKqlFVlAZiwiUkIU7TA1LAlupj_dn37NoIfdN2OfRMsNeVKYSkEo4GKZ8q13R9AsN4npqd49BSPnhML_OU_fF2bTidYP2WhshwL3VWWfQONCm59</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Takahashi, Naoki</creator><creator>Sugiura, Takaya</creator><creator>Sakota, Ryohei</creator><creator>Nakano, Nobuhiko</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6327-2121</orcidid><orcidid>https://orcid.org/0000-0002-2680-386X</orcidid><orcidid>https://orcid.org/0000-0001-8427-1227</orcidid></search><sort><creationdate>20210601</creationdate><title>Numerical simulation of the piezoresistive effect of βGa2O3 in the direction</title><author>Takahashi, Naoki ; Sugiura, Takaya ; Sakota, Ryohei ; Nakano, Nobuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i185t-36946543dff55be488a4225ac1af5e3ee2edc17b919c8ddfee35f6a61392b02a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coefficients</topic><topic>Gallium oxide</topic><topic>Gallium oxides</topic><topic>Mathematical models</topic><topic>Mechanical stress sensor</topic><topic>MEMS</topic><topic>Numerical simulation</topic><topic>Piezoresistive effect</topic><topic>Simulation</topic><topic>Thermal analysis</topic><topic>Wide bandgap semiconductor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Naoki</creatorcontrib><creatorcontrib>Sugiura, Takaya</creatorcontrib><creatorcontrib>Sakota, Ryohei</creatorcontrib><creatorcontrib>Nakano, Nobuhiko</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Naoki</au><au>Sugiura, Takaya</au><au>Sakota, Ryohei</au><au>Nakano, Nobuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of the piezoresistive effect of βGa2O3 in the direction</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>60</volume><issue>SC</issue><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates the piezoresistive coefficient of β-Ga2O3 in the direction using a mechanical stress simulator and a device simulator, which includes our piezoresistive effect model. In this study, the piezoresistive effect model and simulation method are applied to β-Ga2O3 for the first time. The piezoresistor model of β-Ga2O3 is simulated to evaluate the piezoresistive coefficient of β-Ga2O3. The experimentally obtained gauge factor with and without the contact effect is −5.8 and −3.6, respectively. The piezoresistive coefficient with and without the contact effect is −2.0 × 10−11 Pa−1 and −1.2 × 10−11 Pa−1, respectively. The piezoresistive coefficient is used to evaluate the piezoresistive effect at 1000 °C through thermal analysis.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/abe7ff</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6327-2121</orcidid><orcidid>https://orcid.org/0000-0002-2680-386X</orcidid><orcidid>https://orcid.org/0000-0001-8427-1227</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2021-06, Vol.60 (SC) |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_iop_journals_10_35848_1347_4065_abe7ff |
source | Institute of Physics IOPscience extra; Institute of Physics |
subjects | Coefficients Gallium oxide Gallium oxides Mathematical models Mechanical stress sensor MEMS Numerical simulation Piezoresistive effect Simulation Thermal analysis Wide bandgap semiconductor |
title | Numerical simulation of the piezoresistive effect of βGa2O3 in the direction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20the%20piezoresistive%20effect%20of%20%CE%B2Ga2O3%20in%20the%20direction&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Takahashi,%20Naoki&rft.date=2021-06-01&rft.volume=60&rft.issue=SC&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/abe7ff&rft_dat=%3Cproquest_iop_j%3E2499085532%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i185t-36946543dff55be488a4225ac1af5e3ee2edc17b919c8ddfee35f6a61392b02a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499085532&rft_id=info:pmid/&rfr_iscdi=true |