Loading…

Numerical simulation of the piezoresistive effect of βGa2O3 in the direction

β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates t...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2021-06, Vol.60 (SC)
Main Authors: Takahashi, Naoki, Sugiura, Takaya, Sakota, Ryohei, Nakano, Nobuhiko
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue SC
container_start_page
container_title Japanese Journal of Applied Physics
container_volume 60
creator Takahashi, Naoki
Sugiura, Takaya
Sakota, Ryohei
Nakano, Nobuhiko
description β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates the piezoresistive coefficient of β-Ga2O3 in the direction using a mechanical stress simulator and a device simulator, which includes our piezoresistive effect model. In this study, the piezoresistive effect model and simulation method are applied to β-Ga2O3 for the first time. The piezoresistor model of β-Ga2O3 is simulated to evaluate the piezoresistive coefficient of β-Ga2O3. The experimentally obtained gauge factor with and without the contact effect is −5.8 and −3.6, respectively. The piezoresistive coefficient with and without the contact effect is −2.0 × 10−11 Pa−1 and −1.2 × 10−11 Pa−1, respectively. The piezoresistive coefficient is used to evaluate the piezoresistive effect at 1000 °C through thermal analysis.
doi_str_mv 10.35848/1347-4065/abe7ff
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_35848_1347_4065_abe7ff</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499085532</sourcerecordid><originalsourceid>FETCH-LOGICAL-i185t-36946543dff55be488a4225ac1af5e3ee2edc17b919c8ddfee35f6a61392b02a3</originalsourceid><addsrcrecordid>eNptkM9KxDAQxoMouK4-gLeCJw9187dNjlJ0Fap7UM8hbSeYstvWpvXgY_kgPpPpVvQiDAwz32_mgw-hc4KvmJBcrgjjacxxIlamgNTaA7T4XR2iBcaUxFxReoxOvK_DmAhOFujhcdxB70qzjbzbjVszuLaJWhsNrxB1Dj7aHrzzg3uHCKyFcpjEr8-1oRsWuWbPVa4PQjg8RUfWbD2c_fQlerm9ec7u4nyzvs-u89gRKYaYJYoHe1ZZK0QBXErDKRWmJMYKYAAUqpKkhSKqlFVlAZiwiUkIU7TA1LAlupj_dn37NoIfdN2OfRMsNeVKYSkEo4GKZ8q13R9AsN4npqd49BSPnhML_OU_fF2bTidYP2WhshwL3VWWfQONCm59</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499085532</pqid></control><display><type>article</type><title>Numerical simulation of the piezoresistive effect of βGa2O3 in the direction</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics</source><creator>Takahashi, Naoki ; Sugiura, Takaya ; Sakota, Ryohei ; Nakano, Nobuhiko</creator><creatorcontrib>Takahashi, Naoki ; Sugiura, Takaya ; Sakota, Ryohei ; Nakano, Nobuhiko</creatorcontrib><description>β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates the piezoresistive coefficient of β-Ga2O3 in the direction using a mechanical stress simulator and a device simulator, which includes our piezoresistive effect model. In this study, the piezoresistive effect model and simulation method are applied to β-Ga2O3 for the first time. The piezoresistor model of β-Ga2O3 is simulated to evaluate the piezoresistive coefficient of β-Ga2O3. The experimentally obtained gauge factor with and without the contact effect is −5.8 and −3.6, respectively. The piezoresistive coefficient with and without the contact effect is −2.0 × 10−11 Pa−1 and −1.2 × 10−11 Pa−1, respectively. The piezoresistive coefficient is used to evaluate the piezoresistive effect at 1000 °C through thermal analysis.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/abe7ff</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Coefficients ; Gallium oxide ; Gallium oxides ; Mathematical models ; Mechanical stress sensor ; MEMS ; Numerical simulation ; Piezoresistive effect ; Simulation ; Thermal analysis ; Wide bandgap semiconductor</subject><ispartof>Japanese Journal of Applied Physics, 2021-06, Vol.60 (SC)</ispartof><rights>2021 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6327-2121 ; 0000-0002-2680-386X ; 0000-0001-8427-1227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/abe7ff/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,53840</link.rule.ids></links><search><creatorcontrib>Takahashi, Naoki</creatorcontrib><creatorcontrib>Sugiura, Takaya</creatorcontrib><creatorcontrib>Sakota, Ryohei</creatorcontrib><creatorcontrib>Nakano, Nobuhiko</creatorcontrib><title>Numerical simulation of the piezoresistive effect of βGa2O3 in the direction</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates the piezoresistive coefficient of β-Ga2O3 in the direction using a mechanical stress simulator and a device simulator, which includes our piezoresistive effect model. In this study, the piezoresistive effect model and simulation method are applied to β-Ga2O3 for the first time. The piezoresistor model of β-Ga2O3 is simulated to evaluate the piezoresistive coefficient of β-Ga2O3. The experimentally obtained gauge factor with and without the contact effect is −5.8 and −3.6, respectively. The piezoresistive coefficient with and without the contact effect is −2.0 × 10−11 Pa−1 and −1.2 × 10−11 Pa−1, respectively. The piezoresistive coefficient is used to evaluate the piezoresistive effect at 1000 °C through thermal analysis.</description><subject>Coefficients</subject><subject>Gallium oxide</subject><subject>Gallium oxides</subject><subject>Mathematical models</subject><subject>Mechanical stress sensor</subject><subject>MEMS</subject><subject>Numerical simulation</subject><subject>Piezoresistive effect</subject><subject>Simulation</subject><subject>Thermal analysis</subject><subject>Wide bandgap semiconductor</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkM9KxDAQxoMouK4-gLeCJw9187dNjlJ0Fap7UM8hbSeYstvWpvXgY_kgPpPpVvQiDAwz32_mgw-hc4KvmJBcrgjjacxxIlamgNTaA7T4XR2iBcaUxFxReoxOvK_DmAhOFujhcdxB70qzjbzbjVszuLaJWhsNrxB1Dj7aHrzzg3uHCKyFcpjEr8-1oRsWuWbPVa4PQjg8RUfWbD2c_fQlerm9ec7u4nyzvs-u89gRKYaYJYoHe1ZZK0QBXErDKRWmJMYKYAAUqpKkhSKqlFVlAZiwiUkIU7TA1LAlupj_dn37NoIfdN2OfRMsNeVKYSkEo4GKZ8q13R9AsN4npqd49BSPnhML_OU_fF2bTidYP2WhshwL3VWWfQONCm59</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Takahashi, Naoki</creator><creator>Sugiura, Takaya</creator><creator>Sakota, Ryohei</creator><creator>Nakano, Nobuhiko</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6327-2121</orcidid><orcidid>https://orcid.org/0000-0002-2680-386X</orcidid><orcidid>https://orcid.org/0000-0001-8427-1227</orcidid></search><sort><creationdate>20210601</creationdate><title>Numerical simulation of the piezoresistive effect of βGa2O3 in the direction</title><author>Takahashi, Naoki ; Sugiura, Takaya ; Sakota, Ryohei ; Nakano, Nobuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i185t-36946543dff55be488a4225ac1af5e3ee2edc17b919c8ddfee35f6a61392b02a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coefficients</topic><topic>Gallium oxide</topic><topic>Gallium oxides</topic><topic>Mathematical models</topic><topic>Mechanical stress sensor</topic><topic>MEMS</topic><topic>Numerical simulation</topic><topic>Piezoresistive effect</topic><topic>Simulation</topic><topic>Thermal analysis</topic><topic>Wide bandgap semiconductor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Naoki</creatorcontrib><creatorcontrib>Sugiura, Takaya</creatorcontrib><creatorcontrib>Sakota, Ryohei</creatorcontrib><creatorcontrib>Nakano, Nobuhiko</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Naoki</au><au>Sugiura, Takaya</au><au>Sakota, Ryohei</au><au>Nakano, Nobuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of the piezoresistive effect of βGa2O3 in the direction</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>60</volume><issue>SC</issue><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates the piezoresistive coefficient of β-Ga2O3 in the direction using a mechanical stress simulator and a device simulator, which includes our piezoresistive effect model. In this study, the piezoresistive effect model and simulation method are applied to β-Ga2O3 for the first time. The piezoresistor model of β-Ga2O3 is simulated to evaluate the piezoresistive coefficient of β-Ga2O3. The experimentally obtained gauge factor with and without the contact effect is −5.8 and −3.6, respectively. The piezoresistive coefficient with and without the contact effect is −2.0 × 10−11 Pa−1 and −1.2 × 10−11 Pa−1, respectively. The piezoresistive coefficient is used to evaluate the piezoresistive effect at 1000 °C through thermal analysis.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/abe7ff</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6327-2121</orcidid><orcidid>https://orcid.org/0000-0002-2680-386X</orcidid><orcidid>https://orcid.org/0000-0001-8427-1227</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2021-06, Vol.60 (SC)
issn 0021-4922
1347-4065
language eng
recordid cdi_iop_journals_10_35848_1347_4065_abe7ff
source Institute of Physics IOPscience extra; Institute of Physics
subjects Coefficients
Gallium oxide
Gallium oxides
Mathematical models
Mechanical stress sensor
MEMS
Numerical simulation
Piezoresistive effect
Simulation
Thermal analysis
Wide bandgap semiconductor
title Numerical simulation of the piezoresistive effect of βGa2O3 in the direction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20the%20piezoresistive%20effect%20of%20%CE%B2Ga2O3%20in%20the%20direction&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Takahashi,%20Naoki&rft.date=2021-06-01&rft.volume=60&rft.issue=SC&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/abe7ff&rft_dat=%3Cproquest_iop_j%3E2499085532%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i185t-36946543dff55be488a4225ac1af5e3ee2edc17b919c8ddfee35f6a61392b02a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499085532&rft_id=info:pmid/&rfr_iscdi=true