Loading…

Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis

This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2023-09, Vol.62 (SL), p.SL1028
Main Authors: Hasegawa, Taiki, Toko, Susumu, Kamataki, Kunihiro, Koga, Kazunori, Shiratani, Masaharu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue SL
container_start_page SL1028
container_title Japanese Journal of Applied Physics
container_volume 62
creator Hasegawa, Taiki
Toko, Susumu
Kamataki, Kunihiro
Koga, Kazunori
Shiratani, Masaharu
description This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high-temperature process, however, causes catalyst deactivation due to overheating. Plasma catalysis drives low-temperature reactions by excitation and decomposition of source gases via electron impact. We investigated the effect of removing H2O from gas phase in the reaction with Cu and Ni catalysts using molecular sieves in this study. The reverse reaction can be aided by OH radicals derived from H2O. Therefore, CO2 conversion increased from 49.4% to 69.1% for Cu catalysts with molecular sieves, and CH4 selectivity increased from 3.49% to 6.33%. These findings imply that removing H2O can suppress the reverse reactions.
doi_str_mv 10.35848/1347-4065/ace831
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_35848_1347_4065_ace831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2851967557</sourcerecordid><originalsourceid>FETCH-LOGICAL-i298t-bf72e3feb7048dce608d38f10f1f1d0780c124739fe1aa93ce79d00603d5924f3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs_wFvAk4fYfO0me5SitlDooXoOaTZps2w362a3pf_e1IpehIFhXh5mmAeAe4KfWCa5nBDGBeI4zybaWMnIBRj9RpdghDEliBeUXoObGKs05hknI1DOd20X9r7ZwH5roXXOG28bc4TBwZVe697bDnZWm96HJjFdGDZbOKPLFO7CXtfw4PstrMMBtZ2NcegsbGsddxoa3ev6GH28BVdO19He_fQx-Hh9eZ_O0GL5Np8-L5CnhezR2glqmbNrgbksjc2xLJl0BDviSImFxIZQLljhLNG6YMaKosQ4x6zMCsodG4OH89700udgY6-qMHRNOqmozEiRiywTiUJnyof2DyBYfYtUJ2vqZE2dRSb-8R--qnSrcqpWi1QEU6na0rEvfid1lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851967557</pqid></control><display><type>article</type><title>Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics</source><creator>Hasegawa, Taiki ; Toko, Susumu ; Kamataki, Kunihiro ; Koga, Kazunori ; Shiratani, Masaharu</creator><creatorcontrib>Hasegawa, Taiki ; Toko, Susumu ; Kamataki, Kunihiro ; Koga, Kazunori ; Shiratani, Masaharu</creatorcontrib><description>This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high-temperature process, however, causes catalyst deactivation due to overheating. Plasma catalysis drives low-temperature reactions by excitation and decomposition of source gases via electron impact. We investigated the effect of removing H2O from gas phase in the reaction with Cu and Ni catalysts using molecular sieves in this study. The reverse reaction can be aided by OH radicals derived from H2O. Therefore, CO2 conversion increased from 49.4% to 69.1% for Cu catalysts with molecular sieves, and CH4 selectivity increased from 3.49% to 6.33%. These findings imply that removing H2O can suppress the reverse reactions.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ace831</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Carbon dioxide ; Catalysis ; Catalysts ; CCP ; Decomposition reactions ; Deep space ; Electron impact ; High temperature ; In situ resources utilization ; Low pressure ; Low temperature ; Mars ; Mars atmosphere ; methanation ; Methane ; Molecular sieves ; Overheating ; plasma catalyst ; Sabatier reaction ; Space missions ; Vapor phases</subject><ispartof>Japanese Journal of Applied Physics, 2023-09, Vol.62 (SL), p.SL1028</ispartof><rights>2023 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9214-7493 ; 0000-0002-3642-4249 ; 0000-0002-4103-3939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ace831/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,53815</link.rule.ids></links><search><creatorcontrib>Hasegawa, Taiki</creatorcontrib><creatorcontrib>Toko, Susumu</creatorcontrib><creatorcontrib>Kamataki, Kunihiro</creatorcontrib><creatorcontrib>Koga, Kazunori</creatorcontrib><creatorcontrib>Shiratani, Masaharu</creatorcontrib><title>Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high-temperature process, however, causes catalyst deactivation due to overheating. Plasma catalysis drives low-temperature reactions by excitation and decomposition of source gases via electron impact. We investigated the effect of removing H2O from gas phase in the reaction with Cu and Ni catalysts using molecular sieves in this study. The reverse reaction can be aided by OH radicals derived from H2O. Therefore, CO2 conversion increased from 49.4% to 69.1% for Cu catalysts with molecular sieves, and CH4 selectivity increased from 3.49% to 6.33%. These findings imply that removing H2O can suppress the reverse reactions.</description><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>CCP</subject><subject>Decomposition reactions</subject><subject>Deep space</subject><subject>Electron impact</subject><subject>High temperature</subject><subject>In situ resources utilization</subject><subject>Low pressure</subject><subject>Low temperature</subject><subject>Mars</subject><subject>Mars atmosphere</subject><subject>methanation</subject><subject>Methane</subject><subject>Molecular sieves</subject><subject>Overheating</subject><subject>plasma catalyst</subject><subject>Sabatier reaction</subject><subject>Space missions</subject><subject>Vapor phases</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs_wFvAk4fYfO0me5SitlDooXoOaTZps2w362a3pf_e1IpehIFhXh5mmAeAe4KfWCa5nBDGBeI4zybaWMnIBRj9RpdghDEliBeUXoObGKs05hknI1DOd20X9r7ZwH5roXXOG28bc4TBwZVe697bDnZWm96HJjFdGDZbOKPLFO7CXtfw4PstrMMBtZ2NcegsbGsddxoa3ev6GH28BVdO19He_fQx-Hh9eZ_O0GL5Np8-L5CnhezR2glqmbNrgbksjc2xLJl0BDviSImFxIZQLljhLNG6YMaKosQ4x6zMCsodG4OH89700udgY6-qMHRNOqmozEiRiywTiUJnyof2DyBYfYtUJ2vqZE2dRSb-8R--qnSrcqpWi1QEU6na0rEvfid1lw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hasegawa, Taiki</creator><creator>Toko, Susumu</creator><creator>Kamataki, Kunihiro</creator><creator>Koga, Kazunori</creator><creator>Shiratani, Masaharu</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9214-7493</orcidid><orcidid>https://orcid.org/0000-0002-3642-4249</orcidid><orcidid>https://orcid.org/0000-0002-4103-3939</orcidid></search><sort><creationdate>20230901</creationdate><title>Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis</title><author>Hasegawa, Taiki ; Toko, Susumu ; Kamataki, Kunihiro ; Koga, Kazunori ; Shiratani, Masaharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i298t-bf72e3feb7048dce608d38f10f1f1d0780c124739fe1aa93ce79d00603d5924f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>CCP</topic><topic>Decomposition reactions</topic><topic>Deep space</topic><topic>Electron impact</topic><topic>High temperature</topic><topic>In situ resources utilization</topic><topic>Low pressure</topic><topic>Low temperature</topic><topic>Mars</topic><topic>Mars atmosphere</topic><topic>methanation</topic><topic>Methane</topic><topic>Molecular sieves</topic><topic>Overheating</topic><topic>plasma catalyst</topic><topic>Sabatier reaction</topic><topic>Space missions</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasegawa, Taiki</creatorcontrib><creatorcontrib>Toko, Susumu</creatorcontrib><creatorcontrib>Kamataki, Kunihiro</creatorcontrib><creatorcontrib>Koga, Kazunori</creatorcontrib><creatorcontrib>Shiratani, Masaharu</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasegawa, Taiki</au><au>Toko, Susumu</au><au>Kamataki, Kunihiro</au><au>Koga, Kazunori</au><au>Shiratani, Masaharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>62</volume><issue>SL</issue><spage>SL1028</spage><pages>SL1028-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high-temperature process, however, causes catalyst deactivation due to overheating. Plasma catalysis drives low-temperature reactions by excitation and decomposition of source gases via electron impact. We investigated the effect of removing H2O from gas phase in the reaction with Cu and Ni catalysts using molecular sieves in this study. The reverse reaction can be aided by OH radicals derived from H2O. Therefore, CO2 conversion increased from 49.4% to 69.1% for Cu catalysts with molecular sieves, and CH4 selectivity increased from 3.49% to 6.33%. These findings imply that removing H2O can suppress the reverse reactions.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ace831</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9214-7493</orcidid><orcidid>https://orcid.org/0000-0002-3642-4249</orcidid><orcidid>https://orcid.org/0000-0002-4103-3939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2023-09, Vol.62 (SL), p.SL1028
issn 0021-4922
1347-4065
language eng
recordid cdi_iop_journals_10_35848_1347_4065_ace831
source Institute of Physics IOPscience extra; Institute of Physics
subjects Carbon dioxide
Catalysis
Catalysts
CCP
Decomposition reactions
Deep space
Electron impact
High temperature
In situ resources utilization
Low pressure
Low temperature
Mars
Mars atmosphere
methanation
Methane
Molecular sieves
Overheating
plasma catalyst
Sabatier reaction
Space missions
Vapor phases
title Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20efficiency%20of%20Sabatier%20reaction%20through%20H2O%20removal%20with%20low-pressure%20plasma%20catalysis&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Hasegawa,%20Taiki&rft.date=2023-09-01&rft.volume=62&rft.issue=SL&rft.spage=SL1028&rft.pages=SL1028-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ace831&rft_dat=%3Cproquest_iop_j%3E2851967557%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i298t-bf72e3feb7048dce608d38f10f1f1d0780c124739fe1aa93ce79d00603d5924f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2851967557&rft_id=info:pmid/&rfr_iscdi=true