Loading…
Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis
This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high...
Saved in:
Published in: | Japanese Journal of Applied Physics 2023-09, Vol.62 (SL), p.SL1028 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | SL |
container_start_page | SL1028 |
container_title | Japanese Journal of Applied Physics |
container_volume | 62 |
creator | Hasegawa, Taiki Toko, Susumu Kamataki, Kunihiro Koga, Kazunori Shiratani, Masaharu |
description | This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high-temperature process, however, causes catalyst deactivation due to overheating. Plasma catalysis drives low-temperature reactions by excitation and decomposition of source gases via electron impact. We investigated the effect of removing H2O from gas phase in the reaction with Cu and Ni catalysts using molecular sieves in this study. The reverse reaction can be aided by OH radicals derived from H2O. Therefore, CO2 conversion increased from 49.4% to 69.1% for Cu catalysts with molecular sieves, and CH4 selectivity increased from 3.49% to 6.33%. These findings imply that removing H2O can suppress the reverse reactions. |
doi_str_mv | 10.35848/1347-4065/ace831 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_35848_1347_4065_ace831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2851967557</sourcerecordid><originalsourceid>FETCH-LOGICAL-i298t-bf72e3feb7048dce608d38f10f1f1d0780c124739fe1aa93ce79d00603d5924f3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs_wFvAk4fYfO0me5SitlDooXoOaTZps2w362a3pf_e1IpehIFhXh5mmAeAe4KfWCa5nBDGBeI4zybaWMnIBRj9RpdghDEliBeUXoObGKs05hknI1DOd20X9r7ZwH5roXXOG28bc4TBwZVe697bDnZWm96HJjFdGDZbOKPLFO7CXtfw4PstrMMBtZ2NcegsbGsddxoa3ev6GH28BVdO19He_fQx-Hh9eZ_O0GL5Np8-L5CnhezR2glqmbNrgbksjc2xLJl0BDviSImFxIZQLljhLNG6YMaKosQ4x6zMCsodG4OH89700udgY6-qMHRNOqmozEiRiywTiUJnyof2DyBYfYtUJ2vqZE2dRSb-8R--qnSrcqpWi1QEU6na0rEvfid1lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851967557</pqid></control><display><type>article</type><title>Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics</source><creator>Hasegawa, Taiki ; Toko, Susumu ; Kamataki, Kunihiro ; Koga, Kazunori ; Shiratani, Masaharu</creator><creatorcontrib>Hasegawa, Taiki ; Toko, Susumu ; Kamataki, Kunihiro ; Koga, Kazunori ; Shiratani, Masaharu</creatorcontrib><description>This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high-temperature process, however, causes catalyst deactivation due to overheating. Plasma catalysis drives low-temperature reactions by excitation and decomposition of source gases via electron impact. We investigated the effect of removing H2O from gas phase in the reaction with Cu and Ni catalysts using molecular sieves in this study. The reverse reaction can be aided by OH radicals derived from H2O. Therefore, CO2 conversion increased from 49.4% to 69.1% for Cu catalysts with molecular sieves, and CH4 selectivity increased from 3.49% to 6.33%. These findings imply that removing H2O can suppress the reverse reactions.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ace831</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Carbon dioxide ; Catalysis ; Catalysts ; CCP ; Decomposition reactions ; Deep space ; Electron impact ; High temperature ; In situ resources utilization ; Low pressure ; Low temperature ; Mars ; Mars atmosphere ; methanation ; Methane ; Molecular sieves ; Overheating ; plasma catalyst ; Sabatier reaction ; Space missions ; Vapor phases</subject><ispartof>Japanese Journal of Applied Physics, 2023-09, Vol.62 (SL), p.SL1028</ispartof><rights>2023 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9214-7493 ; 0000-0002-3642-4249 ; 0000-0002-4103-3939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ace831/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,53815</link.rule.ids></links><search><creatorcontrib>Hasegawa, Taiki</creatorcontrib><creatorcontrib>Toko, Susumu</creatorcontrib><creatorcontrib>Kamataki, Kunihiro</creatorcontrib><creatorcontrib>Koga, Kazunori</creatorcontrib><creatorcontrib>Shiratani, Masaharu</creatorcontrib><title>Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high-temperature process, however, causes catalyst deactivation due to overheating. Plasma catalysis drives low-temperature reactions by excitation and decomposition of source gases via electron impact. We investigated the effect of removing H2O from gas phase in the reaction with Cu and Ni catalysts using molecular sieves in this study. The reverse reaction can be aided by OH radicals derived from H2O. Therefore, CO2 conversion increased from 49.4% to 69.1% for Cu catalysts with molecular sieves, and CH4 selectivity increased from 3.49% to 6.33%. These findings imply that removing H2O can suppress the reverse reactions.</description><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>CCP</subject><subject>Decomposition reactions</subject><subject>Deep space</subject><subject>Electron impact</subject><subject>High temperature</subject><subject>In situ resources utilization</subject><subject>Low pressure</subject><subject>Low temperature</subject><subject>Mars</subject><subject>Mars atmosphere</subject><subject>methanation</subject><subject>Methane</subject><subject>Molecular sieves</subject><subject>Overheating</subject><subject>plasma catalyst</subject><subject>Sabatier reaction</subject><subject>Space missions</subject><subject>Vapor phases</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs_wFvAk4fYfO0me5SitlDooXoOaTZps2w362a3pf_e1IpehIFhXh5mmAeAe4KfWCa5nBDGBeI4zybaWMnIBRj9RpdghDEliBeUXoObGKs05hknI1DOd20X9r7ZwH5roXXOG28bc4TBwZVe697bDnZWm96HJjFdGDZbOKPLFO7CXtfw4PstrMMBtZ2NcegsbGsddxoa3ev6GH28BVdO19He_fQx-Hh9eZ_O0GL5Np8-L5CnhezR2glqmbNrgbksjc2xLJl0BDviSImFxIZQLljhLNG6YMaKosQ4x6zMCsodG4OH89700udgY6-qMHRNOqmozEiRiywTiUJnyof2DyBYfYtUJ2vqZE2dRSb-8R--qnSrcqpWi1QEU6na0rEvfid1lw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hasegawa, Taiki</creator><creator>Toko, Susumu</creator><creator>Kamataki, Kunihiro</creator><creator>Koga, Kazunori</creator><creator>Shiratani, Masaharu</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9214-7493</orcidid><orcidid>https://orcid.org/0000-0002-3642-4249</orcidid><orcidid>https://orcid.org/0000-0002-4103-3939</orcidid></search><sort><creationdate>20230901</creationdate><title>Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis</title><author>Hasegawa, Taiki ; Toko, Susumu ; Kamataki, Kunihiro ; Koga, Kazunori ; Shiratani, Masaharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i298t-bf72e3feb7048dce608d38f10f1f1d0780c124739fe1aa93ce79d00603d5924f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>CCP</topic><topic>Decomposition reactions</topic><topic>Deep space</topic><topic>Electron impact</topic><topic>High temperature</topic><topic>In situ resources utilization</topic><topic>Low pressure</topic><topic>Low temperature</topic><topic>Mars</topic><topic>Mars atmosphere</topic><topic>methanation</topic><topic>Methane</topic><topic>Molecular sieves</topic><topic>Overheating</topic><topic>plasma catalyst</topic><topic>Sabatier reaction</topic><topic>Space missions</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasegawa, Taiki</creatorcontrib><creatorcontrib>Toko, Susumu</creatorcontrib><creatorcontrib>Kamataki, Kunihiro</creatorcontrib><creatorcontrib>Koga, Kazunori</creatorcontrib><creatorcontrib>Shiratani, Masaharu</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasegawa, Taiki</au><au>Toko, Susumu</au><au>Kamataki, Kunihiro</au><au>Koga, Kazunori</au><au>Shiratani, Masaharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>62</volume><issue>SL</issue><spage>SL1028</spage><pages>SL1028-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>This study aimed to realize in situ resource utilization in deep-space missions. The Sabatier reaction is used to generate CH4 from CO2, which accounts for 95% of the Martian atmosphere, and H2 from H2O on Mars. In general, thermal catalysis at temperatures above 250 °C drives the process. This high-temperature process, however, causes catalyst deactivation due to overheating. Plasma catalysis drives low-temperature reactions by excitation and decomposition of source gases via electron impact. We investigated the effect of removing H2O from gas phase in the reaction with Cu and Ni catalysts using molecular sieves in this study. The reverse reaction can be aided by OH radicals derived from H2O. Therefore, CO2 conversion increased from 49.4% to 69.1% for Cu catalysts with molecular sieves, and CH4 selectivity increased from 3.49% to 6.33%. These findings imply that removing H2O can suppress the reverse reactions.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ace831</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9214-7493</orcidid><orcidid>https://orcid.org/0000-0002-3642-4249</orcidid><orcidid>https://orcid.org/0000-0002-4103-3939</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2023-09, Vol.62 (SL), p.SL1028 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_iop_journals_10_35848_1347_4065_ace831 |
source | Institute of Physics IOPscience extra; Institute of Physics |
subjects | Carbon dioxide Catalysis Catalysts CCP Decomposition reactions Deep space Electron impact High temperature In situ resources utilization Low pressure Low temperature Mars Mars atmosphere methanation Methane Molecular sieves Overheating plasma catalyst Sabatier reaction Space missions Vapor phases |
title | Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20efficiency%20of%20Sabatier%20reaction%20through%20H2O%20removal%20with%20low-pressure%20plasma%20catalysis&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Hasegawa,%20Taiki&rft.date=2023-09-01&rft.volume=62&rft.issue=SL&rft.spage=SL1028&rft.pages=SL1028-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ace831&rft_dat=%3Cproquest_iop_j%3E2851967557%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i298t-bf72e3feb7048dce608d38f10f1f1d0780c124739fe1aa93ce79d00603d5924f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2851967557&rft_id=info:pmid/&rfr_iscdi=true |