Loading…
Enhancement of coercive field in atomically-thin quenched Fe5GeTe2
We have fabricated thin films of a van der Waals (vdW) ferromagnetic metal Fe5GeTe2 and characterized them by measuring the anomalous Hall effect. While the bulk Fe5GeTe2 does not exhibit a perpendicular magnetic anisotropy (PMA) unlike Fe3GeTe2, PMA emerges in the thin film devices. Furthermore, th...
Saved in:
Published in: | Applied physics express 2020-03, Vol.13 (4) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have fabricated thin films of a van der Waals (vdW) ferromagnetic metal Fe5GeTe2 and characterized them by measuring the anomalous Hall effect. While the bulk Fe5GeTe2 does not exhibit a perpendicular magnetic anisotropy (PMA) unlike Fe3GeTe2, PMA emerges in the thin film devices. Furthermore, the PMA is enhanced with decreasing thickness of Fe5GeTe2. In particular, a thin film (5 unit-cell layer) device fabricated with Fe5GeTe2 quenched at 1050 K has two times larger coercive field than that prepared without quenching. Such a PMA should be useful for future vdW spintronic devices. |
---|---|
ISSN: | 1882-0778 1882-0786 |
DOI: | 10.35848/1882-0786/ab7f18 |