Loading…

FIRST RESULTS FROM THE RAPID-RESPONSE SPECTROPHOTOMETRIC CHARACTERIZATION OF NEAR-EARTH OBJECTS USING UKIRT

ABSTRACT Using the Wide Field Camera for the United Kingdom Infrared Telescope (UKIRT), we measure the near-infrared colors of near-Earth objects (NEOs) in order to put constraints on their taxonomic classifications. The rapid-response character of our observations allows us to observe NEOs when the...

Full description

Saved in:
Bibliographic Details
Published in:The Astronomical journal 2016-04, Vol.151 (4), p.98
Main Authors: Mommert, M., Trilling, D. E., Borth, D., Jedicke, R., Butler, N., Reyes-Ruiz, M., Pichardo, B., Petersen, E., Axelrod, T., Moskovitz, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Using the Wide Field Camera for the United Kingdom Infrared Telescope (UKIRT), we measure the near-infrared colors of near-Earth objects (NEOs) in order to put constraints on their taxonomic classifications. The rapid-response character of our observations allows us to observe NEOs when they are close to the Earth and bright. Here we present near-infrared color measurements of 86 NEOs, most of which were observed within a few days of their discovery, allowing us to characterize NEOs with diameters of only a few meters. Using machine-learning methods, we compare our measurements to existing asteroid spectral data and provide probabilistic taxonomic classifications for our targets. Our observations allow us to distinguish between S-complex, C/X-complex, D-type, and V-type asteroids. Our results suggest that the fraction of S-complex asteroids in the whole NEO population is lower than the fraction of ordinary chondrites in the meteorite fall statistics. Future data obtained with UKIRT will be used to investigate the significance of this discrepancy.
ISSN:0004-6256
1538-3881
1538-3881
DOI:10.3847/0004-6256/151/4/98