Loading…

Measuring Young Stars in Space and Time. II. The Pre-main-sequence Stellar Content of N44

The Hubble Space Telescope survey Measuring Young Stars in Space and Time (MYSST) entails some of the deepest photometric observations of extragalactic star formation, capturing even the lowest-mass stars of the active star-forming complex N44 in the Large Magellanic Cloud. We employ the new MYSST s...

Full description

Saved in:
Bibliographic Details
Published in:The Astronomical journal 2021-06, Vol.161 (6), p.257
Main Authors: Ksoll, Victor F., Gouliermis, Dimitrios, Sabbi, Elena, Ryon, Jenna E., Robberto, Massimo, Gennaro, Mario, Klessen, Ralf S., Koethe, Ullrich, de Marchi, Guido, Chen, C.-H. Rosie, Cignoni, Michele, Dolphin, Andrew E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-24c7dfca37202c998e6e4f0ea8c4bab019363df72f077bba2e617037c6880f303
cites cdi_FETCH-LOGICAL-c407t-24c7dfca37202c998e6e4f0ea8c4bab019363df72f077bba2e617037c6880f303
container_end_page
container_issue 6
container_start_page 257
container_title The Astronomical journal
container_volume 161
creator Ksoll, Victor F.
Gouliermis, Dimitrios
Sabbi, Elena
Ryon, Jenna E.
Robberto, Massimo
Gennaro, Mario
Klessen, Ralf S.
Koethe, Ullrich
de Marchi, Guido
Chen, C.-H. Rosie
Cignoni, Michele
Dolphin, Andrew E.
description The Hubble Space Telescope survey Measuring Young Stars in Space and Time (MYSST) entails some of the deepest photometric observations of extragalactic star formation, capturing even the lowest-mass stars of the active star-forming complex N44 in the Large Magellanic Cloud. We employ the new MYSST stellar catalog to identify and characterize the content of young pre-main-sequence (PMS) stars across N44 and analyze the PMS clustering structure. To distinguish PMS stars from more evolved line of sight contaminants, a non-trivial task due to several effects that alter photometry, we utilize a machine-learning classification approach. This consists of training a support vector machine (SVM) and a random forest (RF) on a carefully selected subset of the MYSST data and categorize all observed stars as PMS or non-PMS. Combining SVM and RF predictions to retrieve the most robust set of PMS sources, we find ∼26,700 candidates with a PMS probability above 95% across N44. Employing a clustering approach based on a nearest neighbor surface density estimate, we identify 16 prominent PMS structures at 1 σ significance above the mean density with sub-clusters persisting up to and beyond 3 σ significance. The most active star-forming center, located at the western edge of N44's bubble, is a subcluster with an effective radius of ∼5.6 pc entailing more than 1100 PMS candidates. Furthermore, we confirm that almost all identified clusters coincide with known H ii regions and are close to or harbor massive young O stars or YSOs previously discovered by MUSE and Spitzer observations.
doi_str_mv 10.3847/1538-3881/abee8c
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_abee8c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524950491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-24c7dfca37202c998e6e4f0ea8c4bab019363df72f077bba2e617037c6880f303</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq2KSg2UO0dLcGTD-GPX3iOKCkQCWinpgZPldcawUWJvbefQf89GQXBBXGak0fOOXj2EnDGYCi3VFauFroTW7Mp2iNp9I5P30xGZAICsGl43P8hxzmsAxjTICXl6QJt3qQ_P9CnuxrkoNmXaB7oYrENqw4ou-y1O6Xw-pcsXpH8SVlvbhyrjvx2GkVkU3GxsorMYCoZCo6ePUv4k373dZDx92yfk782v5eyuuv99O59d31dOgioVl06tvLNCceCubTU2KD2g1U52tgPWikasvOIelOo6y7FhCoRyjdbgBYgTcn74G3PpTXZ9QffiYgjoiuGC1S0X-oMaUhxr52LWcZfCWMzwmsu2BtmykYID5VLMOaE3Q-q3Nv03DMxes9k7NXun5qB5jFweIn0cPn5-gV98gtu1YQ0zzdhFmWHlxStSSYia</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524950491</pqid></control><display><type>article</type><title>Measuring Young Stars in Space and Time. II. The Pre-main-sequence Stellar Content of N44</title><source>Directory of Open Access Journals</source><creator>Ksoll, Victor F. ; Gouliermis, Dimitrios ; Sabbi, Elena ; Ryon, Jenna E. ; Robberto, Massimo ; Gennaro, Mario ; Klessen, Ralf S. ; Koethe, Ullrich ; de Marchi, Guido ; Chen, C.-H. Rosie ; Cignoni, Michele ; Dolphin, Andrew E.</creator><creatorcontrib>Ksoll, Victor F. ; Gouliermis, Dimitrios ; Sabbi, Elena ; Ryon, Jenna E. ; Robberto, Massimo ; Gennaro, Mario ; Klessen, Ralf S. ; Koethe, Ullrich ; de Marchi, Guido ; Chen, C.-H. Rosie ; Cignoni, Michele ; Dolphin, Andrew E.</creatorcontrib><description>The Hubble Space Telescope survey Measuring Young Stars in Space and Time (MYSST) entails some of the deepest photometric observations of extragalactic star formation, capturing even the lowest-mass stars of the active star-forming complex N44 in the Large Magellanic Cloud. We employ the new MYSST stellar catalog to identify and characterize the content of young pre-main-sequence (PMS) stars across N44 and analyze the PMS clustering structure. To distinguish PMS stars from more evolved line of sight contaminants, a non-trivial task due to several effects that alter photometry, we utilize a machine-learning classification approach. This consists of training a support vector machine (SVM) and a random forest (RF) on a carefully selected subset of the MYSST data and categorize all observed stars as PMS or non-PMS. Combining SVM and RF predictions to retrieve the most robust set of PMS sources, we find ∼26,700 candidates with a PMS probability above 95% across N44. Employing a clustering approach based on a nearest neighbor surface density estimate, we identify 16 prominent PMS structures at 1 σ significance above the mean density with sub-clusters persisting up to and beyond 3 σ significance. The most active star-forming center, located at the western edge of N44's bubble, is a subcluster with an effective radius of ∼5.6 pc entailing more than 1100 PMS candidates. Furthermore, we confirm that almost all identified clusters coincide with known H ii regions and are close to or harbor massive young O stars or YSOs previously discovered by MUSE and Spitzer observations.</description><identifier>ISSN: 0004-6256</identifier><identifier>ISSN: 1538-3881</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/abee8c</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Astronomical catalogs ; Astronomy ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; CLASSIFICATION ; Clustering ; Contaminants ; DENSITY ; H II regions ; Hubble Space Telescope ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Large Magellanic Cloud ; Low mass stars ; MACHINE LEARNING ; MAGELLANIC CLOUDS ; O stars ; Photometric observations ; PHOTOMETRY ; Pre-main sequence stars ; Random Forests ; SPACE ; Space telescopes ; Star &amp; galaxy formation ; Star formation ; Star forming regions ; STARS ; Stellar evolution ; Support vector machine ; Support vector machines ; SURFACES ; TELESCOPES ; VECTORS ; Young star clusters</subject><ispartof>The Astronomical journal, 2021-06, Vol.161 (6), p.257</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-24c7dfca37202c998e6e4f0ea8c4bab019363df72f077bba2e617037c6880f303</citedby><cites>FETCH-LOGICAL-c407t-24c7dfca37202c998e6e4f0ea8c4bab019363df72f077bba2e617037c6880f303</cites><orcidid>0000-0002-5581-2896 ; 0000-0002-2763-0075 ; 0000-0002-9573-3199 ; 0000-0001-6291-6813 ; 0000-0001-6036-1287 ; 0000-0001-7906-3829 ; 0000-0002-0560-3172 ; 0000-0002-0294-799X ; 0000-0002-3925-9365 ; 0000-0003-2954-7643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/23159238$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ksoll, Victor F.</creatorcontrib><creatorcontrib>Gouliermis, Dimitrios</creatorcontrib><creatorcontrib>Sabbi, Elena</creatorcontrib><creatorcontrib>Ryon, Jenna E.</creatorcontrib><creatorcontrib>Robberto, Massimo</creatorcontrib><creatorcontrib>Gennaro, Mario</creatorcontrib><creatorcontrib>Klessen, Ralf S.</creatorcontrib><creatorcontrib>Koethe, Ullrich</creatorcontrib><creatorcontrib>de Marchi, Guido</creatorcontrib><creatorcontrib>Chen, C.-H. Rosie</creatorcontrib><creatorcontrib>Cignoni, Michele</creatorcontrib><creatorcontrib>Dolphin, Andrew E.</creatorcontrib><title>Measuring Young Stars in Space and Time. II. The Pre-main-sequence Stellar Content of N44</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>The Hubble Space Telescope survey Measuring Young Stars in Space and Time (MYSST) entails some of the deepest photometric observations of extragalactic star formation, capturing even the lowest-mass stars of the active star-forming complex N44 in the Large Magellanic Cloud. We employ the new MYSST stellar catalog to identify and characterize the content of young pre-main-sequence (PMS) stars across N44 and analyze the PMS clustering structure. To distinguish PMS stars from more evolved line of sight contaminants, a non-trivial task due to several effects that alter photometry, we utilize a machine-learning classification approach. This consists of training a support vector machine (SVM) and a random forest (RF) on a carefully selected subset of the MYSST data and categorize all observed stars as PMS or non-PMS. Combining SVM and RF predictions to retrieve the most robust set of PMS sources, we find ∼26,700 candidates with a PMS probability above 95% across N44. Employing a clustering approach based on a nearest neighbor surface density estimate, we identify 16 prominent PMS structures at 1 σ significance above the mean density with sub-clusters persisting up to and beyond 3 σ significance. The most active star-forming center, located at the western edge of N44's bubble, is a subcluster with an effective radius of ∼5.6 pc entailing more than 1100 PMS candidates. Furthermore, we confirm that almost all identified clusters coincide with known H ii regions and are close to or harbor massive young O stars or YSOs previously discovered by MUSE and Spitzer observations.</description><subject>Astronomical catalogs</subject><subject>Astronomy</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>CLASSIFICATION</subject><subject>Clustering</subject><subject>Contaminants</subject><subject>DENSITY</subject><subject>H II regions</subject><subject>Hubble Space Telescope</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Large Magellanic Cloud</subject><subject>Low mass stars</subject><subject>MACHINE LEARNING</subject><subject>MAGELLANIC CLOUDS</subject><subject>O stars</subject><subject>Photometric observations</subject><subject>PHOTOMETRY</subject><subject>Pre-main sequence stars</subject><subject>Random Forests</subject><subject>SPACE</subject><subject>Space telescopes</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>Star forming regions</subject><subject>STARS</subject><subject>Stellar evolution</subject><subject>Support vector machine</subject><subject>Support vector machines</subject><subject>SURFACES</subject><subject>TELESCOPES</subject><subject>VECTORS</subject><subject>Young star clusters</subject><issn>0004-6256</issn><issn>1538-3881</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PGzEQhq2KSg2UO0dLcGTD-GPX3iOKCkQCWinpgZPldcawUWJvbefQf89GQXBBXGak0fOOXj2EnDGYCi3VFauFroTW7Mp2iNp9I5P30xGZAICsGl43P8hxzmsAxjTICXl6QJt3qQ_P9CnuxrkoNmXaB7oYrENqw4ou-y1O6Xw-pcsXpH8SVlvbhyrjvx2GkVkU3GxsorMYCoZCo6ePUv4k373dZDx92yfk782v5eyuuv99O59d31dOgioVl06tvLNCceCubTU2KD2g1U52tgPWikasvOIelOo6y7FhCoRyjdbgBYgTcn74G3PpTXZ9QffiYgjoiuGC1S0X-oMaUhxr52LWcZfCWMzwmsu2BtmykYID5VLMOaE3Q-q3Nv03DMxes9k7NXun5qB5jFweIn0cPn5-gV98gtu1YQ0zzdhFmWHlxStSSYia</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ksoll, Victor F.</creator><creator>Gouliermis, Dimitrios</creator><creator>Sabbi, Elena</creator><creator>Ryon, Jenna E.</creator><creator>Robberto, Massimo</creator><creator>Gennaro, Mario</creator><creator>Klessen, Ralf S.</creator><creator>Koethe, Ullrich</creator><creator>de Marchi, Guido</creator><creator>Chen, C.-H. Rosie</creator><creator>Cignoni, Michele</creator><creator>Dolphin, Andrew E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5581-2896</orcidid><orcidid>https://orcid.org/0000-0002-2763-0075</orcidid><orcidid>https://orcid.org/0000-0002-9573-3199</orcidid><orcidid>https://orcid.org/0000-0001-6291-6813</orcidid><orcidid>https://orcid.org/0000-0001-6036-1287</orcidid><orcidid>https://orcid.org/0000-0001-7906-3829</orcidid><orcidid>https://orcid.org/0000-0002-0560-3172</orcidid><orcidid>https://orcid.org/0000-0002-0294-799X</orcidid><orcidid>https://orcid.org/0000-0002-3925-9365</orcidid><orcidid>https://orcid.org/0000-0003-2954-7643</orcidid></search><sort><creationdate>20210601</creationdate><title>Measuring Young Stars in Space and Time. II. The Pre-main-sequence Stellar Content of N44</title><author>Ksoll, Victor F. ; Gouliermis, Dimitrios ; Sabbi, Elena ; Ryon, Jenna E. ; Robberto, Massimo ; Gennaro, Mario ; Klessen, Ralf S. ; Koethe, Ullrich ; de Marchi, Guido ; Chen, C.-H. Rosie ; Cignoni, Michele ; Dolphin, Andrew E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-24c7dfca37202c998e6e4f0ea8c4bab019363df72f077bba2e617037c6880f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical catalogs</topic><topic>Astronomy</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>CLASSIFICATION</topic><topic>Clustering</topic><topic>Contaminants</topic><topic>DENSITY</topic><topic>H II regions</topic><topic>Hubble Space Telescope</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Large Magellanic Cloud</topic><topic>Low mass stars</topic><topic>MACHINE LEARNING</topic><topic>MAGELLANIC CLOUDS</topic><topic>O stars</topic><topic>Photometric observations</topic><topic>PHOTOMETRY</topic><topic>Pre-main sequence stars</topic><topic>Random Forests</topic><topic>SPACE</topic><topic>Space telescopes</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>Star forming regions</topic><topic>STARS</topic><topic>Stellar evolution</topic><topic>Support vector machine</topic><topic>Support vector machines</topic><topic>SURFACES</topic><topic>TELESCOPES</topic><topic>VECTORS</topic><topic>Young star clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ksoll, Victor F.</creatorcontrib><creatorcontrib>Gouliermis, Dimitrios</creatorcontrib><creatorcontrib>Sabbi, Elena</creatorcontrib><creatorcontrib>Ryon, Jenna E.</creatorcontrib><creatorcontrib>Robberto, Massimo</creatorcontrib><creatorcontrib>Gennaro, Mario</creatorcontrib><creatorcontrib>Klessen, Ralf S.</creatorcontrib><creatorcontrib>Koethe, Ullrich</creatorcontrib><creatorcontrib>de Marchi, Guido</creatorcontrib><creatorcontrib>Chen, C.-H. Rosie</creatorcontrib><creatorcontrib>Cignoni, Michele</creatorcontrib><creatorcontrib>Dolphin, Andrew E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ksoll, Victor F.</au><au>Gouliermis, Dimitrios</au><au>Sabbi, Elena</au><au>Ryon, Jenna E.</au><au>Robberto, Massimo</au><au>Gennaro, Mario</au><au>Klessen, Ralf S.</au><au>Koethe, Ullrich</au><au>de Marchi, Guido</au><au>Chen, C.-H. Rosie</au><au>Cignoni, Michele</au><au>Dolphin, Andrew E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Young Stars in Space and Time. II. The Pre-main-sequence Stellar Content of N44</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>161</volume><issue>6</issue><spage>257</spage><pages>257-</pages><issn>0004-6256</issn><issn>1538-3881</issn><eissn>1538-3881</eissn><abstract>The Hubble Space Telescope survey Measuring Young Stars in Space and Time (MYSST) entails some of the deepest photometric observations of extragalactic star formation, capturing even the lowest-mass stars of the active star-forming complex N44 in the Large Magellanic Cloud. We employ the new MYSST stellar catalog to identify and characterize the content of young pre-main-sequence (PMS) stars across N44 and analyze the PMS clustering structure. To distinguish PMS stars from more evolved line of sight contaminants, a non-trivial task due to several effects that alter photometry, we utilize a machine-learning classification approach. This consists of training a support vector machine (SVM) and a random forest (RF) on a carefully selected subset of the MYSST data and categorize all observed stars as PMS or non-PMS. Combining SVM and RF predictions to retrieve the most robust set of PMS sources, we find ∼26,700 candidates with a PMS probability above 95% across N44. Employing a clustering approach based on a nearest neighbor surface density estimate, we identify 16 prominent PMS structures at 1 σ significance above the mean density with sub-clusters persisting up to and beyond 3 σ significance. The most active star-forming center, located at the western edge of N44's bubble, is a subcluster with an effective radius of ∼5.6 pc entailing more than 1100 PMS candidates. Furthermore, we confirm that almost all identified clusters coincide with known H ii regions and are close to or harbor massive young O stars or YSOs previously discovered by MUSE and Spitzer observations.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/abee8c</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-5581-2896</orcidid><orcidid>https://orcid.org/0000-0002-2763-0075</orcidid><orcidid>https://orcid.org/0000-0002-9573-3199</orcidid><orcidid>https://orcid.org/0000-0001-6291-6813</orcidid><orcidid>https://orcid.org/0000-0001-6036-1287</orcidid><orcidid>https://orcid.org/0000-0001-7906-3829</orcidid><orcidid>https://orcid.org/0000-0002-0560-3172</orcidid><orcidid>https://orcid.org/0000-0002-0294-799X</orcidid><orcidid>https://orcid.org/0000-0002-3925-9365</orcidid><orcidid>https://orcid.org/0000-0003-2954-7643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2021-06, Vol.161 (6), p.257
issn 0004-6256
1538-3881
1538-3881
language eng
recordid cdi_iop_journals_10_3847_1538_3881_abee8c
source Directory of Open Access Journals
subjects Astronomical catalogs
Astronomy
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
CLASSIFICATION
Clustering
Contaminants
DENSITY
H II regions
Hubble Space Telescope
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Large Magellanic Cloud
Low mass stars
MACHINE LEARNING
MAGELLANIC CLOUDS
O stars
Photometric observations
PHOTOMETRY
Pre-main sequence stars
Random Forests
SPACE
Space telescopes
Star & galaxy formation
Star formation
Star forming regions
STARS
Stellar evolution
Support vector machine
Support vector machines
SURFACES
TELESCOPES
VECTORS
Young star clusters
title Measuring Young Stars in Space and Time. II. The Pre-main-sequence Stellar Content of N44
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Young%20Stars%20in%20Space%20and%20Time.%20II.%20The%20Pre-main-sequence%20Stellar%20Content%20of%20N44&rft.jtitle=The%20Astronomical%20journal&rft.au=Ksoll,%20Victor%20F.&rft.date=2021-06-01&rft.volume=161&rft.issue=6&rft.spage=257&rft.pages=257-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/abee8c&rft_dat=%3Cproquest_iop_j%3E2524950491%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-24c7dfca37202c998e6e4f0ea8c4bab019363df72f077bba2e617037c6880f303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2524950491&rft_id=info:pmid/&rfr_iscdi=true