Loading…

The Demographics of Terrestrial Planets in the Venus Zone

Understanding the physical characteristics of Venus, including its atmosphere, interior, and its evolutionary pathway with respect to Earth, remains a vital component for terrestrial planet evolution models and the emergence and/or decline of planetary habitability. A statistical strategy for evalua...

Full description

Saved in:
Bibliographic Details
Published in:The Astronomical journal 2023-04, Vol.165 (4), p.168
Main Authors: Ostberg, Colby, Kane, Stephen R., Li, Zhexing, Schwieterman, Edward W., Hill, Michelle L., Bott, Kimberly, Dalba, Paul A., Fetherolf, Tara, Head, James W., Unterborn, Cayman T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the physical characteristics of Venus, including its atmosphere, interior, and its evolutionary pathway with respect to Earth, remains a vital component for terrestrial planet evolution models and the emergence and/or decline of planetary habitability. A statistical strategy for evaluating the evolutionary pathways of terrestrial planets lies in the atmospheric characterization of exoplanets, where the sample size provides sufficient means for determining required runaway greenhouse conditions. Observations of potential exo-Venuses can help confirm hypotheses about Venus’s past, as well as the occurrence rate of Venus-like planets in other systems. Additionally, the data from future Venus missions, such as DAVINCI, EnVision, and VERITAS, will provide valuable information regarding Venus, and the study of exo-Venuses will be complimentary to these missions. To facilitate studies of exo-Venus candidates, we provide a catalog of all confirmed terrestrial planets in the Venus zone, including transiting and nontransiting cases, and quantify their potential for follow-up observations. We examine the demographics of the exo-Venus population with relation to stellar and planetary properties, such as the planetary radius gap. We highlight specific high-priority exo-Venus targets for follow-up observations, including TOI-2285 b, LTT 1445 A c, TOI-1266 c, LHS 1140 c, and L98–59 d. We also discuss follow-up observations that may yield further insight into the Venus/Earth divergence in atmospheric properties.
ISSN:0004-6256
1538-3881
DOI:10.3847/1538-3881/acbfaf