Loading…
Quantifying Supernovae-driven Multiphase Galactic Outflows
Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution...
Saved in:
Published in: | The Astrophysical journal 2017-06, Vol.841 (2), p.101 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613 |
container_end_page | |
container_issue | 2 |
container_start_page | 101 |
container_title | The Astrophysical journal |
container_volume | 841 |
creator | Li, Miao Bryan, Greg L. Ostriker, Jeremiah P. |
description | Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming the SN rate scales with gas surface density gas as in the Kennicutt-Schmidt relation, we find that the mass loading factor, m, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing gas as . Approximately gas 50 M pc−2 marks when m 1. About 10%-50% of the energy and 40%-80% of the metals produced by SNe end up in the outflows. The tenuous hot phase (T > 3 × 105 K), which fills 60%-80% of the volume at the midplane, carries the majority of the energy and metals in the outflows. We discuss how various physical processes, including the vertical distribution of SNe, photoelectric heating, external gravitational field, and SN rate, affect the loading efficiencies. The relative scale height of gas and SNe is a very important factor in determining the loading efficiencies. |
doi_str_mv | 10.3847/1538-4357/aa7263 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aa7263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365964863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3jwvizbXJJpsPb1K0CpUiKngLMR82pe6uSbbSf-8uK-pBPA0zPO8w8wBwjOA55oRNUIl5TnDJJkqxguIdMPoe7YIRhJDkFLPnfXAQ46pvCyFG4OK-VVXybuur1-yhbWyo6o2yuQl-Y6vsrl0n3yxVtNlMrZVOXmeLNrl1_REPwZ5T62iPvuoYPF1fPU5v8vlidju9nOeaMJJy6yixVHDMsHlxShlttFNUmVILzoQghREl4iW3WmhukCshQ9YqiqHrsgiPwcmwt47Jy6h9snqp66qyOsmi4N23v6km1O-tjUmu6jZU3WGywLQUlHCKOwoOlA51jME62QT_psJWIih7j7KXJntpcvDYRc6GiK-bn53_4Kd_4KpZSU6QLLogko1x-BMxj4BF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365964863</pqid></control><display><type>article</type><title>Quantifying Supernovae-driven Multiphase Galactic Outflows</title><source>EZB Electronic Journals Library</source><creator>Li, Miao ; Bryan, Greg L. ; Ostriker, Jeremiah P.</creator><creatorcontrib>Li, Miao ; Bryan, Greg L. ; Ostriker, Jeremiah P.</creatorcontrib><description>Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming the SN rate scales with gas surface density gas as in the Kennicutt-Schmidt relation, we find that the mass loading factor, m, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing gas as . Approximately gas 50 M pc−2 marks when m 1. About 10%-50% of the energy and 40%-80% of the metals produced by SNe end up in the outflows. The tenuous hot phase (T > 3 × 105 K), which fills 60%-80% of the volume at the midplane, carries the majority of the energy and metals in the outflows. We discuss how various physical processes, including the vertical distribution of SNe, photoelectric heating, external gravitational field, and SN rate, affect the loading efficiencies. The relative scale height of gas and SNe is a very important factor in determining the loading efficiencies.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa7263</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COMPUTERIZED SIMULATION ; DENSITY ; Disk galaxies ; DISTRIBUTION ; EFFICIENCY ; GALACTIC EVOLUTION ; GALAXIES ; galaxies: formation ; galaxies: ISM ; GRAVITATIONAL FIELDS ; HYDRODYNAMICS ; ISM: kinematics and dynamics ; ISM: structure ; MASS ; METALS ; Outflow ; Photoelectricity ; RESOLUTION ; Scale height ; Star & galaxy formation ; Star formation ; SUPERNOVAE ; SURFACES ; Vertical distribution</subject><ispartof>The Astrophysical journal, 2017-06, Vol.841 (2), p.101</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jun 01, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613</citedby><cites>FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613</cites><orcidid>0000-0003-2630-9228 ; 0000-0002-6405-9904 ; 0000-0003-0773-582X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22872661$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Bryan, Greg L.</creatorcontrib><creatorcontrib>Ostriker, Jeremiah P.</creatorcontrib><title>Quantifying Supernovae-driven Multiphase Galactic Outflows</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming the SN rate scales with gas surface density gas as in the Kennicutt-Schmidt relation, we find that the mass loading factor, m, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing gas as . Approximately gas 50 M pc−2 marks when m 1. About 10%-50% of the energy and 40%-80% of the metals produced by SNe end up in the outflows. The tenuous hot phase (T > 3 × 105 K), which fills 60%-80% of the volume at the midplane, carries the majority of the energy and metals in the outflows. We discuss how various physical processes, including the vertical distribution of SNe, photoelectric heating, external gravitational field, and SN rate, affect the loading efficiencies. The relative scale height of gas and SNe is a very important factor in determining the loading efficiencies.</description><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DENSITY</subject><subject>Disk galaxies</subject><subject>DISTRIBUTION</subject><subject>EFFICIENCY</subject><subject>GALACTIC EVOLUTION</subject><subject>GALAXIES</subject><subject>galaxies: formation</subject><subject>galaxies: ISM</subject><subject>GRAVITATIONAL FIELDS</subject><subject>HYDRODYNAMICS</subject><subject>ISM: kinematics and dynamics</subject><subject>ISM: structure</subject><subject>MASS</subject><subject>METALS</subject><subject>Outflow</subject><subject>Photoelectricity</subject><subject>RESOLUTION</subject><subject>Scale height</subject><subject>Star & galaxy formation</subject><subject>Star formation</subject><subject>SUPERNOVAE</subject><subject>SURFACES</subject><subject>Vertical distribution</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt3jwvizbXJJpsPb1K0CpUiKngLMR82pe6uSbbSf-8uK-pBPA0zPO8w8wBwjOA55oRNUIl5TnDJJkqxguIdMPoe7YIRhJDkFLPnfXAQ46pvCyFG4OK-VVXybuur1-yhbWyo6o2yuQl-Y6vsrl0n3yxVtNlMrZVOXmeLNrl1_REPwZ5T62iPvuoYPF1fPU5v8vlidju9nOeaMJJy6yixVHDMsHlxShlttFNUmVILzoQghREl4iW3WmhukCshQ9YqiqHrsgiPwcmwt47Jy6h9snqp66qyOsmi4N23v6km1O-tjUmu6jZU3WGywLQUlHCKOwoOlA51jME62QT_psJWIih7j7KXJntpcvDYRc6GiK-bn53_4Kd_4KpZSU6QLLogko1x-BMxj4BF</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Li, Miao</creator><creator>Bryan, Greg L.</creator><creator>Ostriker, Jeremiah P.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2630-9228</orcidid><orcidid>https://orcid.org/0000-0002-6405-9904</orcidid><orcidid>https://orcid.org/0000-0003-0773-582X</orcidid></search><sort><creationdate>20170601</creationdate><title>Quantifying Supernovae-driven Multiphase Galactic Outflows</title><author>Li, Miao ; Bryan, Greg L. ; Ostriker, Jeremiah P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DENSITY</topic><topic>Disk galaxies</topic><topic>DISTRIBUTION</topic><topic>EFFICIENCY</topic><topic>GALACTIC EVOLUTION</topic><topic>GALAXIES</topic><topic>galaxies: formation</topic><topic>galaxies: ISM</topic><topic>GRAVITATIONAL FIELDS</topic><topic>HYDRODYNAMICS</topic><topic>ISM: kinematics and dynamics</topic><topic>ISM: structure</topic><topic>MASS</topic><topic>METALS</topic><topic>Outflow</topic><topic>Photoelectricity</topic><topic>RESOLUTION</topic><topic>Scale height</topic><topic>Star & galaxy formation</topic><topic>Star formation</topic><topic>SUPERNOVAE</topic><topic>SURFACES</topic><topic>Vertical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Bryan, Greg L.</creatorcontrib><creatorcontrib>Ostriker, Jeremiah P.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Miao</au><au>Bryan, Greg L.</au><au>Ostriker, Jeremiah P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Supernovae-driven Multiphase Galactic Outflows</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>841</volume><issue>2</issue><spage>101</spage><pages>101-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming the SN rate scales with gas surface density gas as in the Kennicutt-Schmidt relation, we find that the mass loading factor, m, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing gas as . Approximately gas 50 M pc−2 marks when m 1. About 10%-50% of the energy and 40%-80% of the metals produced by SNe end up in the outflows. The tenuous hot phase (T > 3 × 105 K), which fills 60%-80% of the volume at the midplane, carries the majority of the energy and metals in the outflows. We discuss how various physical processes, including the vertical distribution of SNe, photoelectric heating, external gravitational field, and SN rate, affect the loading efficiencies. The relative scale height of gas and SNe is a very important factor in determining the loading efficiencies.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa7263</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2630-9228</orcidid><orcidid>https://orcid.org/0000-0002-6405-9904</orcidid><orcidid>https://orcid.org/0000-0003-0773-582X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-06, Vol.841 (2), p.101 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_aa7263 |
source | EZB Electronic Journals Library |
subjects | Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY COMPUTERIZED SIMULATION DENSITY Disk galaxies DISTRIBUTION EFFICIENCY GALACTIC EVOLUTION GALAXIES galaxies: formation galaxies: ISM GRAVITATIONAL FIELDS HYDRODYNAMICS ISM: kinematics and dynamics ISM: structure MASS METALS Outflow Photoelectricity RESOLUTION Scale height Star & galaxy formation Star formation SUPERNOVAE SURFACES Vertical distribution |
title | Quantifying Supernovae-driven Multiphase Galactic Outflows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Supernovae-driven%20Multiphase%20Galactic%20Outflows&rft.jtitle=The%20Astrophysical%20journal&rft.au=Li,%20Miao&rft.date=2017-06-01&rft.volume=841&rft.issue=2&rft.spage=101&rft.pages=101-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa7263&rft_dat=%3Cproquest_iop_j%3E2365964863%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365964863&rft_id=info:pmid/&rfr_iscdi=true |