Loading…

Quantifying Supernovae-driven Multiphase Galactic Outflows

Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2017-06, Vol.841 (2), p.101
Main Authors: Li, Miao, Bryan, Greg L., Ostriker, Jeremiah P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613
cites cdi_FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613
container_end_page
container_issue 2
container_start_page 101
container_title The Astrophysical journal
container_volume 841
creator Li, Miao
Bryan, Greg L.
Ostriker, Jeremiah P.
description Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming the SN rate scales with gas surface density gas as in the Kennicutt-Schmidt relation, we find that the mass loading factor, m, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing gas as . Approximately gas 50 M pc−2 marks when m 1. About 10%-50% of the energy and 40%-80% of the metals produced by SNe end up in the outflows. The tenuous hot phase (T > 3 × 105 K), which fills 60%-80% of the volume at the midplane, carries the majority of the energy and metals in the outflows. We discuss how various physical processes, including the vertical distribution of SNe, photoelectric heating, external gravitational field, and SN rate, affect the loading efficiencies. The relative scale height of gas and SNe is a very important factor in determining the loading efficiencies.
doi_str_mv 10.3847/1538-4357/aa7263
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aa7263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365964863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3jwvizbXJJpsPb1K0CpUiKngLMR82pe6uSbbSf-8uK-pBPA0zPO8w8wBwjOA55oRNUIl5TnDJJkqxguIdMPoe7YIRhJDkFLPnfXAQ46pvCyFG4OK-VVXybuur1-yhbWyo6o2yuQl-Y6vsrl0n3yxVtNlMrZVOXmeLNrl1_REPwZ5T62iPvuoYPF1fPU5v8vlidju9nOeaMJJy6yixVHDMsHlxShlttFNUmVILzoQghREl4iW3WmhukCshQ9YqiqHrsgiPwcmwt47Jy6h9snqp66qyOsmi4N23v6km1O-tjUmu6jZU3WGywLQUlHCKOwoOlA51jME62QT_psJWIih7j7KXJntpcvDYRc6GiK-bn53_4Kd_4KpZSU6QLLogko1x-BMxj4BF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365964863</pqid></control><display><type>article</type><title>Quantifying Supernovae-driven Multiphase Galactic Outflows</title><source>EZB Electronic Journals Library</source><creator>Li, Miao ; Bryan, Greg L. ; Ostriker, Jeremiah P.</creator><creatorcontrib>Li, Miao ; Bryan, Greg L. ; Ostriker, Jeremiah P.</creatorcontrib><description>Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming the SN rate scales with gas surface density gas as in the Kennicutt-Schmidt relation, we find that the mass loading factor, m, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing gas as . Approximately gas 50 M pc−2 marks when m 1. About 10%-50% of the energy and 40%-80% of the metals produced by SNe end up in the outflows. The tenuous hot phase (T &gt; 3 × 105 K), which fills 60%-80% of the volume at the midplane, carries the majority of the energy and metals in the outflows. We discuss how various physical processes, including the vertical distribution of SNe, photoelectric heating, external gravitational field, and SN rate, affect the loading efficiencies. The relative scale height of gas and SNe is a very important factor in determining the loading efficiencies.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa7263</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COMPUTERIZED SIMULATION ; DENSITY ; Disk galaxies ; DISTRIBUTION ; EFFICIENCY ; GALACTIC EVOLUTION ; GALAXIES ; galaxies: formation ; galaxies: ISM ; GRAVITATIONAL FIELDS ; HYDRODYNAMICS ; ISM: kinematics and dynamics ; ISM: structure ; MASS ; METALS ; Outflow ; Photoelectricity ; RESOLUTION ; Scale height ; Star &amp; galaxy formation ; Star formation ; SUPERNOVAE ; SURFACES ; Vertical distribution</subject><ispartof>The Astrophysical journal, 2017-06, Vol.841 (2), p.101</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jun 01, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613</citedby><cites>FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613</cites><orcidid>0000-0003-2630-9228 ; 0000-0002-6405-9904 ; 0000-0003-0773-582X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22872661$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Bryan, Greg L.</creatorcontrib><creatorcontrib>Ostriker, Jeremiah P.</creatorcontrib><title>Quantifying Supernovae-driven Multiphase Galactic Outflows</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming the SN rate scales with gas surface density gas as in the Kennicutt-Schmidt relation, we find that the mass loading factor, m, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing gas as . Approximately gas 50 M pc−2 marks when m 1. About 10%-50% of the energy and 40%-80% of the metals produced by SNe end up in the outflows. The tenuous hot phase (T &gt; 3 × 105 K), which fills 60%-80% of the volume at the midplane, carries the majority of the energy and metals in the outflows. We discuss how various physical processes, including the vertical distribution of SNe, photoelectric heating, external gravitational field, and SN rate, affect the loading efficiencies. The relative scale height of gas and SNe is a very important factor in determining the loading efficiencies.</description><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DENSITY</subject><subject>Disk galaxies</subject><subject>DISTRIBUTION</subject><subject>EFFICIENCY</subject><subject>GALACTIC EVOLUTION</subject><subject>GALAXIES</subject><subject>galaxies: formation</subject><subject>galaxies: ISM</subject><subject>GRAVITATIONAL FIELDS</subject><subject>HYDRODYNAMICS</subject><subject>ISM: kinematics and dynamics</subject><subject>ISM: structure</subject><subject>MASS</subject><subject>METALS</subject><subject>Outflow</subject><subject>Photoelectricity</subject><subject>RESOLUTION</subject><subject>Scale height</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>SUPERNOVAE</subject><subject>SURFACES</subject><subject>Vertical distribution</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt3jwvizbXJJpsPb1K0CpUiKngLMR82pe6uSbbSf-8uK-pBPA0zPO8w8wBwjOA55oRNUIl5TnDJJkqxguIdMPoe7YIRhJDkFLPnfXAQ46pvCyFG4OK-VVXybuur1-yhbWyo6o2yuQl-Y6vsrl0n3yxVtNlMrZVOXmeLNrl1_REPwZ5T62iPvuoYPF1fPU5v8vlidju9nOeaMJJy6yixVHDMsHlxShlttFNUmVILzoQghREl4iW3WmhukCshQ9YqiqHrsgiPwcmwt47Jy6h9snqp66qyOsmi4N23v6km1O-tjUmu6jZU3WGywLQUlHCKOwoOlA51jME62QT_psJWIih7j7KXJntpcvDYRc6GiK-bn53_4Kd_4KpZSU6QLLogko1x-BMxj4BF</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Li, Miao</creator><creator>Bryan, Greg L.</creator><creator>Ostriker, Jeremiah P.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2630-9228</orcidid><orcidid>https://orcid.org/0000-0002-6405-9904</orcidid><orcidid>https://orcid.org/0000-0003-0773-582X</orcidid></search><sort><creationdate>20170601</creationdate><title>Quantifying Supernovae-driven Multiphase Galactic Outflows</title><author>Li, Miao ; Bryan, Greg L. ; Ostriker, Jeremiah P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DENSITY</topic><topic>Disk galaxies</topic><topic>DISTRIBUTION</topic><topic>EFFICIENCY</topic><topic>GALACTIC EVOLUTION</topic><topic>GALAXIES</topic><topic>galaxies: formation</topic><topic>galaxies: ISM</topic><topic>GRAVITATIONAL FIELDS</topic><topic>HYDRODYNAMICS</topic><topic>ISM: kinematics and dynamics</topic><topic>ISM: structure</topic><topic>MASS</topic><topic>METALS</topic><topic>Outflow</topic><topic>Photoelectricity</topic><topic>RESOLUTION</topic><topic>Scale height</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>SUPERNOVAE</topic><topic>SURFACES</topic><topic>Vertical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Bryan, Greg L.</creatorcontrib><creatorcontrib>Ostriker, Jeremiah P.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Miao</au><au>Bryan, Greg L.</au><au>Ostriker, Jeremiah P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Supernovae-driven Multiphase Galactic Outflows</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>841</volume><issue>2</issue><spage>101</spage><pages>101-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Galactic outflows are observed everywhere in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass, and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming the SN rate scales with gas surface density gas as in the Kennicutt-Schmidt relation, we find that the mass loading factor, m, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing gas as . Approximately gas 50 M pc−2 marks when m 1. About 10%-50% of the energy and 40%-80% of the metals produced by SNe end up in the outflows. The tenuous hot phase (T &gt; 3 × 105 K), which fills 60%-80% of the volume at the midplane, carries the majority of the energy and metals in the outflows. We discuss how various physical processes, including the vertical distribution of SNe, photoelectric heating, external gravitational field, and SN rate, affect the loading efficiencies. The relative scale height of gas and SNe is a very important factor in determining the loading efficiencies.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa7263</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2630-9228</orcidid><orcidid>https://orcid.org/0000-0002-6405-9904</orcidid><orcidid>https://orcid.org/0000-0003-0773-582X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-06, Vol.841 (2), p.101
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_aa7263
source EZB Electronic Journals Library
subjects Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COMPUTERIZED SIMULATION
DENSITY
Disk galaxies
DISTRIBUTION
EFFICIENCY
GALACTIC EVOLUTION
GALAXIES
galaxies: formation
galaxies: ISM
GRAVITATIONAL FIELDS
HYDRODYNAMICS
ISM: kinematics and dynamics
ISM: structure
MASS
METALS
Outflow
Photoelectricity
RESOLUTION
Scale height
Star & galaxy formation
Star formation
SUPERNOVAE
SURFACES
Vertical distribution
title Quantifying Supernovae-driven Multiphase Galactic Outflows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Supernovae-driven%20Multiphase%20Galactic%20Outflows&rft.jtitle=The%20Astrophysical%20journal&rft.au=Li,%20Miao&rft.date=2017-06-01&rft.volume=841&rft.issue=2&rft.spage=101&rft.pages=101-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa7263&rft_dat=%3Cproquest_iop_j%3E2365964863%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-ef64e698373dbfaadcdcfa6ad5c9879942d951858ec9c8d1f5071eea630fef613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365964863&rft_id=info:pmid/&rfr_iscdi=true