Loading…
Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star
We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In...
Saved in:
Published in: | The Astrophysical journal 2017-12, Vol.851 (1), p.6 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23 |
container_end_page | |
container_issue | 1 |
container_start_page | 6 |
container_title | The Astrophysical journal |
container_volume | 851 |
creator | Patton, Kelly M. Lunardini, Cecilia Farmer, Robert J. Timmes, F. X. |
description | We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced flux has a high-energy spectrum tail, at , which is mostly due to decay and electron capture on isotopes with . In a tentative window of observability of and hr pre-collapse, the contribution of beta processes to the flux is at the level of ∼90%. For a star at D = 1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to ∼30% is due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova. |
doi_str_mv | 10.3847/1538-4357/aa95c4 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aa95c4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365794145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQa9Wk2adNt602XVhfUDVPAWxnTiZtltapIu-N_bUtGTp-HN_N5jeIQcc3YuCplf8EwUiRRZfgFQZlrukNHvapeMGGMymYj8bZ8chLDqZVqWIwIP2EZvaxeo8W5DrzECffJOYwgYqK1pLzG0DfrabeGyP77b-oPGJdJ5cNE1VtPZ1q3baF1Nnekc9xCC3SJ9juAPyZ6BdcCjnzkmrzezl-ldsni8nU-vFomWUsQkF4KDBlZpCTotGFQMwUjOkQPINJcZTirBDSsA04xpjhMpCmbyvDJlBakYk5Mh14VoVdA2ol5qV9eoo-IZ54zzDjodoMa7zxZDVCvX-rr7S6VikuWl5DLrKDZQ2rsQPBrVeLsB_6U4U33bqq9W9dWqoe3OcjZYrGv-Mv_FvwEQ4YBx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365794145</pqid></control><display><type>article</type><title>Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Patton, Kelly M. ; Lunardini, Cecilia ; Farmer, Robert J. ; Timmes, F. X.</creator><creatorcontrib>Patton, Kelly M. ; Lunardini, Cecilia ; Farmer, Robert J. ; Timmes, F. X. ; Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><description>We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced flux has a high-energy spectrum tail, at , which is mostly due to decay and electron capture on isotopes with . In a tentative window of observability of and hr pre-collapse, the contribution of beta processes to the flux is at the level of ∼90%. For a star at D = 1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to ∼30% is due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa95c4</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Argon ; ASTRONOMY AND ASTROPHYSICS ; astroparticle physics ; Astrophysics ; Beta decay ; Electron capture ; Emissivity ; Energy spectra ; Fluctuations ; Flux ; High energy astronomy ; Isotopes ; Massive stars ; Neutrinos ; Scintillation counters ; Sensitivity enhancement ; Signal processing ; Stars & galaxies ; Stellar evolution ; Supernova</subject><ispartof>The Astrophysical journal, 2017-12, Vol.851 (1), p.6</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23</citedby><cites>FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23</cites><orcidid>0000-0002-0474-159X ; 0000-0003-3441-7624 ; 0000-0002-2154-4782 ; 0000-0002-9253-1663 ; 0000000292531663 ; 0000000334417624 ; 000000020474159X ; 0000000221544782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1511011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Patton, Kelly M.</creatorcontrib><creatorcontrib>Lunardini, Cecilia</creatorcontrib><creatorcontrib>Farmer, Robert J.</creatorcontrib><creatorcontrib>Timmes, F. X.</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><title>Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced flux has a high-energy spectrum tail, at , which is mostly due to decay and electron capture on isotopes with . In a tentative window of observability of and hr pre-collapse, the contribution of beta processes to the flux is at the level of ∼90%. For a star at D = 1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to ∼30% is due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova.</description><subject>Argon</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>astroparticle physics</subject><subject>Astrophysics</subject><subject>Beta decay</subject><subject>Electron capture</subject><subject>Emissivity</subject><subject>Energy spectra</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>High energy astronomy</subject><subject>Isotopes</subject><subject>Massive stars</subject><subject>Neutrinos</subject><subject>Scintillation counters</subject><subject>Sensitivity enhancement</subject><subject>Signal processing</subject><subject>Stars & galaxies</subject><subject>Stellar evolution</subject><subject>Supernova</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQa9Wk2adNt602XVhfUDVPAWxnTiZtltapIu-N_bUtGTp-HN_N5jeIQcc3YuCplf8EwUiRRZfgFQZlrukNHvapeMGGMymYj8bZ8chLDqZVqWIwIP2EZvaxeo8W5DrzECffJOYwgYqK1pLzG0DfrabeGyP77b-oPGJdJ5cNE1VtPZ1q3baF1Nnekc9xCC3SJ9juAPyZ6BdcCjnzkmrzezl-ldsni8nU-vFomWUsQkF4KDBlZpCTotGFQMwUjOkQPINJcZTirBDSsA04xpjhMpCmbyvDJlBakYk5Mh14VoVdA2ol5qV9eoo-IZ54zzDjodoMa7zxZDVCvX-rr7S6VikuWl5DLrKDZQ2rsQPBrVeLsB_6U4U33bqq9W9dWqoe3OcjZYrGv-Mv_FvwEQ4YBx</recordid><startdate>20171210</startdate><enddate>20171210</enddate><creator>Patton, Kelly M.</creator><creator>Lunardini, Cecilia</creator><creator>Farmer, Robert J.</creator><creator>Timmes, F. X.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0474-159X</orcidid><orcidid>https://orcid.org/0000-0003-3441-7624</orcidid><orcidid>https://orcid.org/0000-0002-2154-4782</orcidid><orcidid>https://orcid.org/0000-0002-9253-1663</orcidid><orcidid>https://orcid.org/0000000292531663</orcidid><orcidid>https://orcid.org/0000000334417624</orcidid><orcidid>https://orcid.org/000000020474159X</orcidid><orcidid>https://orcid.org/0000000221544782</orcidid></search><sort><creationdate>20171210</creationdate><title>Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star</title><author>Patton, Kelly M. ; Lunardini, Cecilia ; Farmer, Robert J. ; Timmes, F. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Argon</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>astroparticle physics</topic><topic>Astrophysics</topic><topic>Beta decay</topic><topic>Electron capture</topic><topic>Emissivity</topic><topic>Energy spectra</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>High energy astronomy</topic><topic>Isotopes</topic><topic>Massive stars</topic><topic>Neutrinos</topic><topic>Scintillation counters</topic><topic>Sensitivity enhancement</topic><topic>Signal processing</topic><topic>Stars & galaxies</topic><topic>Stellar evolution</topic><topic>Supernova</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patton, Kelly M.</creatorcontrib><creatorcontrib>Lunardini, Cecilia</creatorcontrib><creatorcontrib>Farmer, Robert J.</creatorcontrib><creatorcontrib>Timmes, F. X.</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patton, Kelly M.</au><au>Lunardini, Cecilia</au><au>Farmer, Robert J.</au><au>Timmes, F. X.</au><aucorp>Arizona State Univ., Tempe, AZ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-12-10</date><risdate>2017</risdate><volume>851</volume><issue>1</issue><spage>6</spage><pages>6-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced flux has a high-energy spectrum tail, at , which is mostly due to decay and electron capture on isotopes with . In a tentative window of observability of and hr pre-collapse, the contribution of beta processes to the flux is at the level of ∼90%. For a star at D = 1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to ∼30% is due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa95c4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0474-159X</orcidid><orcidid>https://orcid.org/0000-0003-3441-7624</orcidid><orcidid>https://orcid.org/0000-0002-2154-4782</orcidid><orcidid>https://orcid.org/0000-0002-9253-1663</orcidid><orcidid>https://orcid.org/0000000292531663</orcidid><orcidid>https://orcid.org/0000000334417624</orcidid><orcidid>https://orcid.org/000000020474159X</orcidid><orcidid>https://orcid.org/0000000221544782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-12, Vol.851 (1), p.6 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_aa95c4 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Argon ASTRONOMY AND ASTROPHYSICS astroparticle physics Astrophysics Beta decay Electron capture Emissivity Energy spectra Fluctuations Flux High energy astronomy Isotopes Massive stars Neutrinos Scintillation counters Sensitivity enhancement Signal processing Stars & galaxies Stellar evolution Supernova |
title | Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutrinos%20from%20Beta%20Processes%20in%20a%20Presupernova:%20Probing%20the%20Isotopic%20Evolution%20of%20a%20Massive%20Star&rft.jtitle=The%20Astrophysical%20journal&rft.au=Patton,%20Kelly%20M.&rft.aucorp=Arizona%20State%20Univ.,%20Tempe,%20AZ%20(United%20States)&rft.date=2017-12-10&rft.volume=851&rft.issue=1&rft.spage=6&rft.pages=6-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa95c4&rft_dat=%3Cproquest_iop_j%3E2365794145%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365794145&rft_id=info:pmid/&rfr_iscdi=true |