Loading…

Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star

We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2017-12, Vol.851 (1), p.6
Main Authors: Patton, Kelly M., Lunardini, Cecilia, Farmer, Robert J., Timmes, F. X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23
cites cdi_FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23
container_end_page
container_issue 1
container_start_page 6
container_title The Astrophysical journal
container_volume 851
creator Patton, Kelly M.
Lunardini, Cecilia
Farmer, Robert J.
Timmes, F. X.
description We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced flux has a high-energy spectrum tail, at , which is mostly due to decay and electron capture on isotopes with . In a tentative window of observability of and hr pre-collapse, the contribution of beta processes to the flux is at the level of ∼90%. For a star at D = 1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to ∼30% is due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova.
doi_str_mv 10.3847/1538-4357/aa95c4
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aa95c4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365794145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQa9Wk2adNt602XVhfUDVPAWxnTiZtltapIu-N_bUtGTp-HN_N5jeIQcc3YuCplf8EwUiRRZfgFQZlrukNHvapeMGGMymYj8bZ8chLDqZVqWIwIP2EZvaxeo8W5DrzECffJOYwgYqK1pLzG0DfrabeGyP77b-oPGJdJ5cNE1VtPZ1q3baF1Nnekc9xCC3SJ9juAPyZ6BdcCjnzkmrzezl-ldsni8nU-vFomWUsQkF4KDBlZpCTotGFQMwUjOkQPINJcZTirBDSsA04xpjhMpCmbyvDJlBakYk5Mh14VoVdA2ol5qV9eoo-IZ54zzDjodoMa7zxZDVCvX-rr7S6VikuWl5DLrKDZQ2rsQPBrVeLsB_6U4U33bqq9W9dWqoe3OcjZYrGv-Mv_FvwEQ4YBx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365794145</pqid></control><display><type>article</type><title>Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Patton, Kelly M. ; Lunardini, Cecilia ; Farmer, Robert J. ; Timmes, F. X.</creator><creatorcontrib>Patton, Kelly M. ; Lunardini, Cecilia ; Farmer, Robert J. ; Timmes, F. X. ; Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><description>We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced flux has a high-energy spectrum tail, at , which is mostly due to decay and electron capture on isotopes with . In a tentative window of observability of and hr pre-collapse, the contribution of beta processes to the flux is at the level of ∼90%. For a star at D = 1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to ∼30% is due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa95c4</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Argon ; ASTRONOMY AND ASTROPHYSICS ; astroparticle physics ; Astrophysics ; Beta decay ; Electron capture ; Emissivity ; Energy spectra ; Fluctuations ; Flux ; High energy astronomy ; Isotopes ; Massive stars ; Neutrinos ; Scintillation counters ; Sensitivity enhancement ; Signal processing ; Stars &amp; galaxies ; Stellar evolution ; Supernova</subject><ispartof>The Astrophysical journal, 2017-12, Vol.851 (1), p.6</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23</citedby><cites>FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23</cites><orcidid>0000-0002-0474-159X ; 0000-0003-3441-7624 ; 0000-0002-2154-4782 ; 0000-0002-9253-1663 ; 0000000292531663 ; 0000000334417624 ; 000000020474159X ; 0000000221544782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1511011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Patton, Kelly M.</creatorcontrib><creatorcontrib>Lunardini, Cecilia</creatorcontrib><creatorcontrib>Farmer, Robert J.</creatorcontrib><creatorcontrib>Timmes, F. X.</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><title>Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced flux has a high-energy spectrum tail, at , which is mostly due to decay and electron capture on isotopes with . In a tentative window of observability of and hr pre-collapse, the contribution of beta processes to the flux is at the level of ∼90%. For a star at D = 1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to ∼30% is due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova.</description><subject>Argon</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>astroparticle physics</subject><subject>Astrophysics</subject><subject>Beta decay</subject><subject>Electron capture</subject><subject>Emissivity</subject><subject>Energy spectra</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>High energy astronomy</subject><subject>Isotopes</subject><subject>Massive stars</subject><subject>Neutrinos</subject><subject>Scintillation counters</subject><subject>Sensitivity enhancement</subject><subject>Signal processing</subject><subject>Stars &amp; galaxies</subject><subject>Stellar evolution</subject><subject>Supernova</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQa9Wk2adNt602XVhfUDVPAWxnTiZtltapIu-N_bUtGTp-HN_N5jeIQcc3YuCplf8EwUiRRZfgFQZlrukNHvapeMGGMymYj8bZ8chLDqZVqWIwIP2EZvaxeo8W5DrzECffJOYwgYqK1pLzG0DfrabeGyP77b-oPGJdJ5cNE1VtPZ1q3baF1Nnekc9xCC3SJ9juAPyZ6BdcCjnzkmrzezl-ldsni8nU-vFomWUsQkF4KDBlZpCTotGFQMwUjOkQPINJcZTirBDSsA04xpjhMpCmbyvDJlBakYk5Mh14VoVdA2ol5qV9eoo-IZ54zzDjodoMa7zxZDVCvX-rr7S6VikuWl5DLrKDZQ2rsQPBrVeLsB_6U4U33bqq9W9dWqoe3OcjZYrGv-Mv_FvwEQ4YBx</recordid><startdate>20171210</startdate><enddate>20171210</enddate><creator>Patton, Kelly M.</creator><creator>Lunardini, Cecilia</creator><creator>Farmer, Robert J.</creator><creator>Timmes, F. X.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0474-159X</orcidid><orcidid>https://orcid.org/0000-0003-3441-7624</orcidid><orcidid>https://orcid.org/0000-0002-2154-4782</orcidid><orcidid>https://orcid.org/0000-0002-9253-1663</orcidid><orcidid>https://orcid.org/0000000292531663</orcidid><orcidid>https://orcid.org/0000000334417624</orcidid><orcidid>https://orcid.org/000000020474159X</orcidid><orcidid>https://orcid.org/0000000221544782</orcidid></search><sort><creationdate>20171210</creationdate><title>Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star</title><author>Patton, Kelly M. ; Lunardini, Cecilia ; Farmer, Robert J. ; Timmes, F. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Argon</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>astroparticle physics</topic><topic>Astrophysics</topic><topic>Beta decay</topic><topic>Electron capture</topic><topic>Emissivity</topic><topic>Energy spectra</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>High energy astronomy</topic><topic>Isotopes</topic><topic>Massive stars</topic><topic>Neutrinos</topic><topic>Scintillation counters</topic><topic>Sensitivity enhancement</topic><topic>Signal processing</topic><topic>Stars &amp; galaxies</topic><topic>Stellar evolution</topic><topic>Supernova</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patton, Kelly M.</creatorcontrib><creatorcontrib>Lunardini, Cecilia</creatorcontrib><creatorcontrib>Farmer, Robert J.</creatorcontrib><creatorcontrib>Timmes, F. X.</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patton, Kelly M.</au><au>Lunardini, Cecilia</au><au>Farmer, Robert J.</au><au>Timmes, F. X.</au><aucorp>Arizona State Univ., Tempe, AZ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-12-10</date><risdate>2017</risdate><volume>851</volume><issue>1</issue><spage>6</spage><pages>6-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>We present a new calculation of the neutrino flux received at Earth from a massive star in the ∼24 hr of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced flux has a high-energy spectrum tail, at , which is mostly due to decay and electron capture on isotopes with . In a tentative window of observability of and hr pre-collapse, the contribution of beta processes to the flux is at the level of ∼90%. For a star at D = 1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to ∼30% is due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa95c4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0474-159X</orcidid><orcidid>https://orcid.org/0000-0003-3441-7624</orcidid><orcidid>https://orcid.org/0000-0002-2154-4782</orcidid><orcidid>https://orcid.org/0000-0002-9253-1663</orcidid><orcidid>https://orcid.org/0000000292531663</orcidid><orcidid>https://orcid.org/0000000334417624</orcidid><orcidid>https://orcid.org/000000020474159X</orcidid><orcidid>https://orcid.org/0000000221544782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-12, Vol.851 (1), p.6
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_aa95c4
source EZB-FREE-00999 freely available EZB journals
subjects Argon
ASTRONOMY AND ASTROPHYSICS
astroparticle physics
Astrophysics
Beta decay
Electron capture
Emissivity
Energy spectra
Fluctuations
Flux
High energy astronomy
Isotopes
Massive stars
Neutrinos
Scintillation counters
Sensitivity enhancement
Signal processing
Stars & galaxies
Stellar evolution
Supernova
title Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutrinos%20from%20Beta%20Processes%20in%20a%20Presupernova:%20Probing%20the%20Isotopic%20Evolution%20of%20a%20Massive%20Star&rft.jtitle=The%20Astrophysical%20journal&rft.au=Patton,%20Kelly%20M.&rft.aucorp=Arizona%20State%20Univ.,%20Tempe,%20AZ%20(United%20States)&rft.date=2017-12-10&rft.volume=851&rft.issue=1&rft.spage=6&rft.pages=6-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa95c4&rft_dat=%3Cproquest_iop_j%3E2365794145%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-7331aca0dc4ac280ad0eaf411e1aa42745e6d31f08ae250c1e64380f77df9da23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365794145&rft_id=info:pmid/&rfr_iscdi=true