Loading…
New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region
Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brig...
Saved in:
Published in: | The Astrophysical journal 2018-02, Vol.854 (2), p.177 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brightest disks in the nearby star-forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (≥20 au radius) from a complete disk survey of the Lupus star-forming region, using ALMA Band 7 observations at 0 3 (22-30 au radius) resolution of the 345 GHz continuum, 13CO and C18O 3-2 observations, and the spectral energy distribution of each source. Gas and dust surface density profiles are derived using the physical-chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star-forming region. The dust cavity sizes range from 20 to 90 au radius, and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is , which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aaaa6b |