Loading…

The Anatomy of the Column Density Probability Distribution Function (N-PDF)

The column density probability distribution function (N-PDF) of Giant Molecular Clouds (GMCs) has been used as a diagnostic of star formation. Simulations and analytic predictions have suggested that the N-PDF is composed of a low-density lognormal component and a high-density power-law component tr...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2018-06, Vol.859 (2), p.162
Main Authors: Chen, Hope How-Huan, Burkhart, Blakesley, Goodman, Alyssa, Collins, David C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-f9e49241b64e65fe00d0be453915143f8f9f4bd2d9605e556549ccf34604a2383
cites cdi_FETCH-LOGICAL-c380t-f9e49241b64e65fe00d0be453915143f8f9f4bd2d9605e556549ccf34604a2383
container_end_page
container_issue 2
container_start_page 162
container_title The Astrophysical journal
container_volume 859
creator Chen, Hope How-Huan
Burkhart, Blakesley
Goodman, Alyssa
Collins, David C.
description The column density probability distribution function (N-PDF) of Giant Molecular Clouds (GMCs) has been used as a diagnostic of star formation. Simulations and analytic predictions have suggested that the N-PDF is composed of a low-density lognormal component and a high-density power-law component tracing turbulence and gravitational collapse, respectively. In this paper, we study how various properties of the true 2D column density distribution create the shape, or "anatomy," of the PDF. We test our ideas and analytic approaches using both a real, observed PDF based on Herschel observations of dust emission and a simulation that uses the ENZO code. Using a dendrogram analysis, we examine the three main components of the N-PDF: the lognormal component, the power-law component, and the transition point between these two components. We find that the power-law component of an N-PDF is the summation of N-PDFs of power-law substructures identified by the dendrogram algorithm. We also find that the analytic solution to the transition point between lognormal and power-law components proposed by Burkhart et al. is applicable when tested on observations and simulations, within the uncertainties. Based on the resulting anatomy of the N-PDF, we suggest applying the N-PDF analysis in combination with the dendrogram algorithm to obtain a more complete picture of the global and local environments and their effects on the density structures.
doi_str_mv 10.3847/1538-4357/aabaf6
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aabaf6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365806378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-f9e49241b64e65fe00d0be453915143f8f9f4bd2d9605e556549ccf34604a2383</originalsourceid><addsrcrecordid>eNp9UM9LwzAYDaLgnN49FkRQsC5pfqw5js6pOHSHCd5C0iaYsTU1SQ_7722t6EU8fe99vPc-vgfAOYK3OCfTCaI4Twmm04mUShp2AEY_q0MwghCSlOHp2zE4CWHT04zzEXhav-tkVsvodvvEmSR2tHDbdlcnc10HG_fJyjslld32eG5D9Fa10bo6WbR1-QWuntPVfHF9Co6M3AZ99j3H4HVxty4e0uXL_WMxW6YlzmFMDdeEZwQpRjSjRkNYQaUJxRxRRLDJDTdEVVnFGaSaUkYJL0uDCYNEZjjHY3Ax5DbefbQ6RLFxra-7kyLDjOaw-7NXwUFVeheC10Y03u6k3wsERV-Z6PsRfT9iqKyz3AwW65rfzH_kl3_IZbMROeUiE4hloqkM_gSGk3jD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365806378</pqid></control><display><type>article</type><title>The Anatomy of the Column Density Probability Distribution Function (N-PDF)</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Hope How-Huan ; Burkhart, Blakesley ; Goodman, Alyssa ; Collins, David C.</creator><creatorcontrib>Chen, Hope How-Huan ; Burkhart, Blakesley ; Goodman, Alyssa ; Collins, David C.</creatorcontrib><description>The column density probability distribution function (N-PDF) of Giant Molecular Clouds (GMCs) has been used as a diagnostic of star formation. Simulations and analytic predictions have suggested that the N-PDF is composed of a low-density lognormal component and a high-density power-law component tracing turbulence and gravitational collapse, respectively. In this paper, we study how various properties of the true 2D column density distribution create the shape, or "anatomy," of the PDF. We test our ideas and analytic approaches using both a real, observed PDF based on Herschel observations of dust emission and a simulation that uses the ENZO code. Using a dendrogram analysis, we examine the three main components of the N-PDF: the lognormal component, the power-law component, and the transition point between these two components. We find that the power-law component of an N-PDF is the summation of N-PDFs of power-law substructures identified by the dendrogram algorithm. We also find that the analytic solution to the transition point between lognormal and power-law components proposed by Burkhart et al. is applicable when tested on observations and simulations, within the uncertainties. Based on the resulting anatomy of the N-PDF, we suggest applying the N-PDF analysis in combination with the dendrogram algorithm to obtain a more complete picture of the global and local environments and their effects on the density structures.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aabaf6</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Anatomy ; Astrophysics ; Computer simulation ; Density ; Density distribution ; Diagnostic systems ; Distribution functions ; Dust emission ; Environmental effects ; Exact solutions ; galaxies: star formation ; Gravitational collapse ; ISM: clouds ; magnetohydrodynamics (MHD) ; Mathematical analysis ; Molecular clouds ; Power law ; Probability distribution ; Probability distribution functions ; Star &amp; galaxy formation ; Star formation ; Substructures ; Transition points ; Turbulence</subject><ispartof>The Astrophysical journal, 2018-06, Vol.859 (2), p.162</ispartof><rights>2018. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Jun 01, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-f9e49241b64e65fe00d0be453915143f8f9f4bd2d9605e556549ccf34604a2383</citedby><cites>FETCH-LOGICAL-c380t-f9e49241b64e65fe00d0be453915143f8f9f4bd2d9605e556549ccf34604a2383</cites><orcidid>0000-0001-6661-2243 ; 0000-0001-6222-1712 ; 0000-0003-1312-0477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Hope How-Huan</creatorcontrib><creatorcontrib>Burkhart, Blakesley</creatorcontrib><creatorcontrib>Goodman, Alyssa</creatorcontrib><creatorcontrib>Collins, David C.</creatorcontrib><title>The Anatomy of the Column Density Probability Distribution Function (N-PDF)</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The column density probability distribution function (N-PDF) of Giant Molecular Clouds (GMCs) has been used as a diagnostic of star formation. Simulations and analytic predictions have suggested that the N-PDF is composed of a low-density lognormal component and a high-density power-law component tracing turbulence and gravitational collapse, respectively. In this paper, we study how various properties of the true 2D column density distribution create the shape, or "anatomy," of the PDF. We test our ideas and analytic approaches using both a real, observed PDF based on Herschel observations of dust emission and a simulation that uses the ENZO code. Using a dendrogram analysis, we examine the three main components of the N-PDF: the lognormal component, the power-law component, and the transition point between these two components. We find that the power-law component of an N-PDF is the summation of N-PDFs of power-law substructures identified by the dendrogram algorithm. We also find that the analytic solution to the transition point between lognormal and power-law components proposed by Burkhart et al. is applicable when tested on observations and simulations, within the uncertainties. Based on the resulting anatomy of the N-PDF, we suggest applying the N-PDF analysis in combination with the dendrogram algorithm to obtain a more complete picture of the global and local environments and their effects on the density structures.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>Astrophysics</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Density distribution</subject><subject>Diagnostic systems</subject><subject>Distribution functions</subject><subject>Dust emission</subject><subject>Environmental effects</subject><subject>Exact solutions</subject><subject>galaxies: star formation</subject><subject>Gravitational collapse</subject><subject>ISM: clouds</subject><subject>magnetohydrodynamics (MHD)</subject><subject>Mathematical analysis</subject><subject>Molecular clouds</subject><subject>Power law</subject><subject>Probability distribution</subject><subject>Probability distribution functions</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>Substructures</subject><subject>Transition points</subject><subject>Turbulence</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UM9LwzAYDaLgnN49FkRQsC5pfqw5js6pOHSHCd5C0iaYsTU1SQ_7722t6EU8fe99vPc-vgfAOYK3OCfTCaI4Twmm04mUShp2AEY_q0MwghCSlOHp2zE4CWHT04zzEXhav-tkVsvodvvEmSR2tHDbdlcnc10HG_fJyjslld32eG5D9Fa10bo6WbR1-QWuntPVfHF9Co6M3AZ99j3H4HVxty4e0uXL_WMxW6YlzmFMDdeEZwQpRjSjRkNYQaUJxRxRRLDJDTdEVVnFGaSaUkYJL0uDCYNEZjjHY3Ax5DbefbQ6RLFxra-7kyLDjOaw-7NXwUFVeheC10Y03u6k3wsERV-Z6PsRfT9iqKyz3AwW65rfzH_kl3_IZbMROeUiE4hloqkM_gSGk3jD</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Chen, Hope How-Huan</creator><creator>Burkhart, Blakesley</creator><creator>Goodman, Alyssa</creator><creator>Collins, David C.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6661-2243</orcidid><orcidid>https://orcid.org/0000-0001-6222-1712</orcidid><orcidid>https://orcid.org/0000-0003-1312-0477</orcidid></search><sort><creationdate>20180601</creationdate><title>The Anatomy of the Column Density Probability Distribution Function (N-PDF)</title><author>Chen, Hope How-Huan ; Burkhart, Blakesley ; Goodman, Alyssa ; Collins, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-f9e49241b64e65fe00d0be453915143f8f9f4bd2d9605e556549ccf34604a2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>Astrophysics</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Density distribution</topic><topic>Diagnostic systems</topic><topic>Distribution functions</topic><topic>Dust emission</topic><topic>Environmental effects</topic><topic>Exact solutions</topic><topic>galaxies: star formation</topic><topic>Gravitational collapse</topic><topic>ISM: clouds</topic><topic>magnetohydrodynamics (MHD)</topic><topic>Mathematical analysis</topic><topic>Molecular clouds</topic><topic>Power law</topic><topic>Probability distribution</topic><topic>Probability distribution functions</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>Substructures</topic><topic>Transition points</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hope How-Huan</creatorcontrib><creatorcontrib>Burkhart, Blakesley</creatorcontrib><creatorcontrib>Goodman, Alyssa</creatorcontrib><creatorcontrib>Collins, David C.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hope How-Huan</au><au>Burkhart, Blakesley</au><au>Goodman, Alyssa</au><au>Collins, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Anatomy of the Column Density Probability Distribution Function (N-PDF)</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>859</volume><issue>2</issue><spage>162</spage><pages>162-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The column density probability distribution function (N-PDF) of Giant Molecular Clouds (GMCs) has been used as a diagnostic of star formation. Simulations and analytic predictions have suggested that the N-PDF is composed of a low-density lognormal component and a high-density power-law component tracing turbulence and gravitational collapse, respectively. In this paper, we study how various properties of the true 2D column density distribution create the shape, or "anatomy," of the PDF. We test our ideas and analytic approaches using both a real, observed PDF based on Herschel observations of dust emission and a simulation that uses the ENZO code. Using a dendrogram analysis, we examine the three main components of the N-PDF: the lognormal component, the power-law component, and the transition point between these two components. We find that the power-law component of an N-PDF is the summation of N-PDFs of power-law substructures identified by the dendrogram algorithm. We also find that the analytic solution to the transition point between lognormal and power-law components proposed by Burkhart et al. is applicable when tested on observations and simulations, within the uncertainties. Based on the resulting anatomy of the N-PDF, we suggest applying the N-PDF analysis in combination with the dendrogram algorithm to obtain a more complete picture of the global and local environments and their effects on the density structures.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aabaf6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6661-2243</orcidid><orcidid>https://orcid.org/0000-0001-6222-1712</orcidid><orcidid>https://orcid.org/0000-0003-1312-0477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-06, Vol.859 (2), p.162
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_aabaf6
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Anatomy
Astrophysics
Computer simulation
Density
Density distribution
Diagnostic systems
Distribution functions
Dust emission
Environmental effects
Exact solutions
galaxies: star formation
Gravitational collapse
ISM: clouds
magnetohydrodynamics (MHD)
Mathematical analysis
Molecular clouds
Power law
Probability distribution
Probability distribution functions
Star & galaxy formation
Star formation
Substructures
Transition points
Turbulence
title The Anatomy of the Column Density Probability Distribution Function (N-PDF)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Anatomy%20of%20the%20Column%20Density%20Probability%20Distribution%20Function%20(N-PDF)&rft.jtitle=The%20Astrophysical%20journal&rft.au=Chen,%20Hope%20How-Huan&rft.date=2018-06-01&rft.volume=859&rft.issue=2&rft.spage=162&rft.pages=162-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aabaf6&rft_dat=%3Cproquest_iop_j%3E2365806378%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-f9e49241b64e65fe00d0be453915143f8f9f4bd2d9605e556549ccf34604a2383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365806378&rft_id=info:pmid/&rfr_iscdi=true