Loading…
GalMod: A Galactic Synthesis Population Model
We present a new Galaxy population synthesis Model, GalMod. GalMod is a star-count model featuring an asymmetric bar/bulge as well as spiral arms and related extinction. The model, initially introduced in Pasetto et al., has been here completed with a central bar, a new bulge description, new disk v...
Saved in:
Published in: | The Astrophysical journal 2018-06, Vol.860 (2), p.120 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a new Galaxy population synthesis Model, GalMod. GalMod is a star-count model featuring an asymmetric bar/bulge as well as spiral arms and related extinction. The model, initially introduced in Pasetto et al., has been here completed with a central bar, a new bulge description, new disk vertical profiles, and several new bolometric corrections. The model can generate synthetic mock catalogs of visible portions of the Milky Way, external galaxies like M31, or N-body simulation initial conditions. At any given time, e.g., at a chosen age of the Galaxy, the model contains a sum of discrete stellar populations, namely the bulge/bar, disk, and halo. These populations are in turn the sum of different components: the disk is the sum of the spiral arms, thin disks, a thick disk, and various gas components, while the halo is the sum of a stellar component, a hot coronal gas, and a dark-matter component. The Galactic potential is computed from these population density profiles and used to generate detailed kinematics by considering up to the first four moments of the collisionless Boltzmann equation. The same density profiles are then used to define the observed color-magnitude diagrams in a user-defined field of view (FoV) from an arbitrary solar location. Several photometric systems have been included and made available online, and no limits on the size of the FoV are imposed thus allowing full-sky simulations, too. Finally, we model the extinction by adopting a dust model with advanced ray-tracing solutions. The model's Web page (and tutorial) can be accessed at www.GalMod.org and support is provided at Galaxy.Model@yahoo.com. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aac1bb |