Loading…
A Lower Limit on the Mass of Our Galaxy from the H3 Survey
The timing argument provides a lower limit on the mass of the Milky Way. Using a sample of 32 stars at R > 60 kpc drawn from the H3 Spectroscopic Survey and mock catalogs created from published numerical simulations, we find that M200 > 0.91 × 1012 M with 90% confidence. We recommend using thi...
Saved in:
Published in: | The Astrophysical journal 2020-01, Vol.888 (2), p.114 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The timing argument provides a lower limit on the mass of the Milky Way. Using a sample of 32 stars at R > 60 kpc drawn from the H3 Spectroscopic Survey and mock catalogs created from published numerical simulations, we find that M200 > 0.91 × 1012 M with 90% confidence. We recommend using this limit to refine the allowed prior mass range in more complex and sophisticated statistical treatments of Milky Way dynamics. The use of such a prior would have significantly reduced many previously published uncertainty ranges. Our analysis suggests that the most likely value of M200 is 1.5 × 1012 M , but establishing this as the Milky Way mass requires a larger sample of outer halo stars and a more complete analysis of the inner halo stars in H3. The imminent growth in the sample of outer halo stars due to ongoing and planned surveys will make this possible. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ab5b93 |