Loading…

A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge

With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce fo...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2020-04, Vol.892 (2), p.112
Main Authors: Soraisam, Monika D., Saha, Abhijit, Matheson, Thomas, Lee, Chien-Hsiu, Narayan, Gautham, Vivas, A. Katherina, Scheidegger, Carlos, Oppermann, Niels, Olszewski, Edward W., Sinha, Sukriti, DeSantis, Sarah R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3
cites cdi_FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3
container_end_page
container_issue 2
container_start_page 112
container_title The Astrophysical journal
container_volume 892
creator Soraisam, Monika D.
Saha, Abhijit
Matheson, Thomas
Lee, Chien-Hsiu
Narayan, Gautham
Vivas, A. Katherina
Scheidegger, Carlos
Oppermann, Niels
Olszewski, Edward W.
Sinha, Sukriti
DeSantis, Sarah R.
description With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to identify these novel events within a given population of variable sources. We determine the distributions of magnitude changes (dm) over time intervals (dt) for a given passband f, , and use these distributions to compute the likelihood of a test source being consistent with the population or being an outlier. We demonstrate our algorithm by applying it to the DECam multiband time-series data of more than 2000 variable stars identified by Saha et al. in the Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18 outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RS CVn stars, as well as sources in the blue horizontal branch region of the color-magnitude diagram without any known counterparts. We compare the performance of our algorithm for novelty detection with the multivariate Kernel Density Estimator and Isolation Forest on the simulated PLAsTiCC data set. We find that our algorithm yields comparable results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time alert-broker system.
doi_str_mv 10.3847/1538-4357/ab7b61
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab7b61</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386963830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3</originalsourceid><addsrcrecordid>eNp9kc1r3DAQxUVpIdu09xwFIbc60cfalo_bzUcLSxvYbelNjKVxosW2XEmb0L-p_2Rs3DSX0tMww--9B28IOeHsXKplecFzqbKlzMsLqMu64K_I4u_pNVkwxpZZIcsfR-RtjPtpFVW1IL9XdN1CjK5xBpLzPV21dz64dN_Rxge6cx1m1nfgevrFP2CbHEY6LrcBBwizZAI32-1u1GJI8ZyuhqF99kuefofgoG6RbhOESKG3dBegjw77FOklJjQJLX0cU-nl1Rq6KSDdI72BFkxyhn48tHf4jrxpoI34_s88Jt-ur3brT9nm683n9WqTGalYyqyxBbfCMpmr0nDFmUUhUCyZUk1Ts7JqrDVgpVClULllNeZCFkzVNWNQgjwmp7PvEPzPA8ak9_4Q-jFSC6mKqpBKspFiM2WCjzFgo4fgOgi_NGd6eome-tdT_3p-ySj5MEucH148_4Of_QOHYa9VJbTQnAs92EY-AYefm4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386963830</pqid></control><display><type>article</type><title>A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge</title><source>EZB Electronic Journals Library</source><creator>Soraisam, Monika D. ; Saha, Abhijit ; Matheson, Thomas ; Lee, Chien-Hsiu ; Narayan, Gautham ; Vivas, A. Katherina ; Scheidegger, Carlos ; Oppermann, Niels ; Olszewski, Edward W. ; Sinha, Sukriti ; DeSantis, Sarah R.</creator><creatorcontrib>Soraisam, Monika D. ; Saha, Abhijit ; Matheson, Thomas ; Lee, Chien-Hsiu ; Narayan, Gautham ; Vivas, A. Katherina ; Scheidegger, Carlos ; Oppermann, Niels ; Olszewski, Edward W. ; Sinha, Sukriti ; DeSantis, Sarah R. ; ANTARES collaboration</creatorcontrib><description>With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to identify these novel events within a given population of variable sources. We determine the distributions of magnitude changes (dm) over time intervals (dt) for a given passband f, , and use these distributions to compute the likelihood of a test source being consistent with the population or being an outlier. We demonstrate our algorithm by applying it to the DECam multiband time-series data of more than 2000 variable stars identified by Saha et al. in the Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18 outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RS CVn stars, as well as sources in the blue horizontal branch region of the color-magnitude diagram without any known counterparts. We compare the performance of our algorithm for novelty detection with the multivariate Kernel Density Estimator and Isolation Forest on the simulated PLAsTiCC data set. We find that our algorithm yields comparable results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time alert-broker system.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab7b61</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astronomy ; Astronomy databases ; Astrophysics ; Astrostatistics ; Computer simulation ; Consumer goods ; Dwarf novae ; Galactic bulge ; Horizontal branch stars ; Microlenses ; Outliers (statistics) ; Real time ; Real variables ; Surveys ; Time domain analysis ; Time domain astronomy ; Transients (astronomy) ; Variable stars</subject><ispartof>The Astrophysical journal, 2020-04, Vol.892 (2), p.112</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Apr 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3</citedby><cites>FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3</cites><orcidid>0000-0003-4341-6172 ; 0000-0003-1700-5740 ; 0000-0001-6022-0484 ; 0000-0002-6839-4881 ; 0000-0001-6685-0479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soraisam, Monika D.</creatorcontrib><creatorcontrib>Saha, Abhijit</creatorcontrib><creatorcontrib>Matheson, Thomas</creatorcontrib><creatorcontrib>Lee, Chien-Hsiu</creatorcontrib><creatorcontrib>Narayan, Gautham</creatorcontrib><creatorcontrib>Vivas, A. Katherina</creatorcontrib><creatorcontrib>Scheidegger, Carlos</creatorcontrib><creatorcontrib>Oppermann, Niels</creatorcontrib><creatorcontrib>Olszewski, Edward W.</creatorcontrib><creatorcontrib>Sinha, Sukriti</creatorcontrib><creatorcontrib>DeSantis, Sarah R.</creatorcontrib><creatorcontrib>ANTARES collaboration</creatorcontrib><title>A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to identify these novel events within a given population of variable sources. We determine the distributions of magnitude changes (dm) over time intervals (dt) for a given passband f, , and use these distributions to compute the likelihood of a test source being consistent with the population or being an outlier. We demonstrate our algorithm by applying it to the DECam multiband time-series data of more than 2000 variable stars identified by Saha et al. in the Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18 outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RS CVn stars, as well as sources in the blue horizontal branch region of the color-magnitude diagram without any known counterparts. We compare the performance of our algorithm for novelty detection with the multivariate Kernel Density Estimator and Isolation Forest on the simulated PLAsTiCC data set. We find that our algorithm yields comparable results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time alert-broker system.</description><subject>Algorithms</subject><subject>Astronomy</subject><subject>Astronomy databases</subject><subject>Astrophysics</subject><subject>Astrostatistics</subject><subject>Computer simulation</subject><subject>Consumer goods</subject><subject>Dwarf novae</subject><subject>Galactic bulge</subject><subject>Horizontal branch stars</subject><subject>Microlenses</subject><subject>Outliers (statistics)</subject><subject>Real time</subject><subject>Real variables</subject><subject>Surveys</subject><subject>Time domain analysis</subject><subject>Time domain astronomy</subject><subject>Transients (astronomy)</subject><subject>Variable stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1r3DAQxUVpIdu09xwFIbc60cfalo_bzUcLSxvYbelNjKVxosW2XEmb0L-p_2Rs3DSX0tMww--9B28IOeHsXKplecFzqbKlzMsLqMu64K_I4u_pNVkwxpZZIcsfR-RtjPtpFVW1IL9XdN1CjK5xBpLzPV21dz64dN_Rxge6cx1m1nfgevrFP2CbHEY6LrcBBwizZAI32-1u1GJI8ZyuhqF99kuefofgoG6RbhOESKG3dBegjw77FOklJjQJLX0cU-nl1Rq6KSDdI72BFkxyhn48tHf4jrxpoI34_s88Jt-ur3brT9nm683n9WqTGalYyqyxBbfCMpmr0nDFmUUhUCyZUk1Ts7JqrDVgpVClULllNeZCFkzVNWNQgjwmp7PvEPzPA8ak9_4Q-jFSC6mKqpBKspFiM2WCjzFgo4fgOgi_NGd6eome-tdT_3p-ySj5MEucH148_4Of_QOHYa9VJbTQnAs92EY-AYefm4g</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Soraisam, Monika D.</creator><creator>Saha, Abhijit</creator><creator>Matheson, Thomas</creator><creator>Lee, Chien-Hsiu</creator><creator>Narayan, Gautham</creator><creator>Vivas, A. Katherina</creator><creator>Scheidegger, Carlos</creator><creator>Oppermann, Niels</creator><creator>Olszewski, Edward W.</creator><creator>Sinha, Sukriti</creator><creator>DeSantis, Sarah R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4341-6172</orcidid><orcidid>https://orcid.org/0000-0003-1700-5740</orcidid><orcidid>https://orcid.org/0000-0001-6022-0484</orcidid><orcidid>https://orcid.org/0000-0002-6839-4881</orcidid><orcidid>https://orcid.org/0000-0001-6685-0479</orcidid></search><sort><creationdate>20200401</creationdate><title>A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge</title><author>Soraisam, Monika D. ; Saha, Abhijit ; Matheson, Thomas ; Lee, Chien-Hsiu ; Narayan, Gautham ; Vivas, A. Katherina ; Scheidegger, Carlos ; Oppermann, Niels ; Olszewski, Edward W. ; Sinha, Sukriti ; DeSantis, Sarah R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Astronomy</topic><topic>Astronomy databases</topic><topic>Astrophysics</topic><topic>Astrostatistics</topic><topic>Computer simulation</topic><topic>Consumer goods</topic><topic>Dwarf novae</topic><topic>Galactic bulge</topic><topic>Horizontal branch stars</topic><topic>Microlenses</topic><topic>Outliers (statistics)</topic><topic>Real time</topic><topic>Real variables</topic><topic>Surveys</topic><topic>Time domain analysis</topic><topic>Time domain astronomy</topic><topic>Transients (astronomy)</topic><topic>Variable stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soraisam, Monika D.</creatorcontrib><creatorcontrib>Saha, Abhijit</creatorcontrib><creatorcontrib>Matheson, Thomas</creatorcontrib><creatorcontrib>Lee, Chien-Hsiu</creatorcontrib><creatorcontrib>Narayan, Gautham</creatorcontrib><creatorcontrib>Vivas, A. Katherina</creatorcontrib><creatorcontrib>Scheidegger, Carlos</creatorcontrib><creatorcontrib>Oppermann, Niels</creatorcontrib><creatorcontrib>Olszewski, Edward W.</creatorcontrib><creatorcontrib>Sinha, Sukriti</creatorcontrib><creatorcontrib>DeSantis, Sarah R.</creatorcontrib><creatorcontrib>ANTARES collaboration</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soraisam, Monika D.</au><au>Saha, Abhijit</au><au>Matheson, Thomas</au><au>Lee, Chien-Hsiu</au><au>Narayan, Gautham</au><au>Vivas, A. Katherina</au><au>Scheidegger, Carlos</au><au>Oppermann, Niels</au><au>Olszewski, Edward W.</au><au>Sinha, Sukriti</au><au>DeSantis, Sarah R.</au><aucorp>ANTARES collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>892</volume><issue>2</issue><spage>112</spage><pages>112-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to identify these novel events within a given population of variable sources. We determine the distributions of magnitude changes (dm) over time intervals (dt) for a given passband f, , and use these distributions to compute the likelihood of a test source being consistent with the population or being an outlier. We demonstrate our algorithm by applying it to the DECam multiband time-series data of more than 2000 variable stars identified by Saha et al. in the Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18 outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RS CVn stars, as well as sources in the blue horizontal branch region of the color-magnitude diagram without any known counterparts. We compare the performance of our algorithm for novelty detection with the multivariate Kernel Density Estimator and Isolation Forest on the simulated PLAsTiCC data set. We find that our algorithm yields comparable results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time alert-broker system.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab7b61</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4341-6172</orcidid><orcidid>https://orcid.org/0000-0003-1700-5740</orcidid><orcidid>https://orcid.org/0000-0001-6022-0484</orcidid><orcidid>https://orcid.org/0000-0002-6839-4881</orcidid><orcidid>https://orcid.org/0000-0001-6685-0479</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-04, Vol.892 (2), p.112
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ab7b61
source EZB Electronic Journals Library
subjects Algorithms
Astronomy
Astronomy databases
Astrophysics
Astrostatistics
Computer simulation
Consumer goods
Dwarf novae
Galactic bulge
Horizontal branch stars
Microlenses
Outliers (statistics)
Real time
Real variables
Surveys
Time domain analysis
Time domain astronomy
Transients (astronomy)
Variable stars
title A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Classification%20Algorithm%20for%20Time-domain%20Novelties%20in%20Preparation%20for%20LSST%20Alerts.%20Application%20to%20Variable%20Stars%20and%20Transients%20Detected%20with%20DECam%20in%20the%20Galactic%20Bulge&rft.jtitle=The%20Astrophysical%20journal&rft.au=Soraisam,%20Monika%20D.&rft.aucorp=ANTARES%C2%A0collaboration&rft.date=2020-04-01&rft.volume=892&rft.issue=2&rft.spage=112&rft.pages=112-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab7b61&rft_dat=%3Cproquest_iop_j%3E2386963830%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386963830&rft_id=info:pmid/&rfr_iscdi=true