Loading…
A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge
With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce fo...
Saved in:
Published in: | The Astrophysical journal 2020-04, Vol.892 (2), p.112 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3 |
container_end_page | |
container_issue | 2 |
container_start_page | 112 |
container_title | The Astrophysical journal |
container_volume | 892 |
creator | Soraisam, Monika D. Saha, Abhijit Matheson, Thomas Lee, Chien-Hsiu Narayan, Gautham Vivas, A. Katherina Scheidegger, Carlos Oppermann, Niels Olszewski, Edward W. Sinha, Sukriti DeSantis, Sarah R. |
description | With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to identify these novel events within a given population of variable sources. We determine the distributions of magnitude changes (dm) over time intervals (dt) for a given passband f, , and use these distributions to compute the likelihood of a test source being consistent with the population or being an outlier. We demonstrate our algorithm by applying it to the DECam multiband time-series data of more than 2000 variable stars identified by Saha et al. in the Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18 outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RS CVn stars, as well as sources in the blue horizontal branch region of the color-magnitude diagram without any known counterparts. We compare the performance of our algorithm for novelty detection with the multivariate Kernel Density Estimator and Isolation Forest on the simulated PLAsTiCC data set. We find that our algorithm yields comparable results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time alert-broker system. |
doi_str_mv | 10.3847/1538-4357/ab7b61 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab7b61</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386963830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3</originalsourceid><addsrcrecordid>eNp9kc1r3DAQxUVpIdu09xwFIbc60cfalo_bzUcLSxvYbelNjKVxosW2XEmb0L-p_2Rs3DSX0tMww--9B28IOeHsXKplecFzqbKlzMsLqMu64K_I4u_pNVkwxpZZIcsfR-RtjPtpFVW1IL9XdN1CjK5xBpLzPV21dz64dN_Rxge6cx1m1nfgevrFP2CbHEY6LrcBBwizZAI32-1u1GJI8ZyuhqF99kuefofgoG6RbhOESKG3dBegjw77FOklJjQJLX0cU-nl1Rq6KSDdI72BFkxyhn48tHf4jrxpoI34_s88Jt-ur3brT9nm683n9WqTGalYyqyxBbfCMpmr0nDFmUUhUCyZUk1Ts7JqrDVgpVClULllNeZCFkzVNWNQgjwmp7PvEPzPA8ak9_4Q-jFSC6mKqpBKspFiM2WCjzFgo4fgOgi_NGd6eome-tdT_3p-ySj5MEucH148_4Of_QOHYa9VJbTQnAs92EY-AYefm4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386963830</pqid></control><display><type>article</type><title>A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge</title><source>EZB Electronic Journals Library</source><creator>Soraisam, Monika D. ; Saha, Abhijit ; Matheson, Thomas ; Lee, Chien-Hsiu ; Narayan, Gautham ; Vivas, A. Katherina ; Scheidegger, Carlos ; Oppermann, Niels ; Olszewski, Edward W. ; Sinha, Sukriti ; DeSantis, Sarah R.</creator><creatorcontrib>Soraisam, Monika D. ; Saha, Abhijit ; Matheson, Thomas ; Lee, Chien-Hsiu ; Narayan, Gautham ; Vivas, A. Katherina ; Scheidegger, Carlos ; Oppermann, Niels ; Olszewski, Edward W. ; Sinha, Sukriti ; DeSantis, Sarah R. ; ANTARES collaboration</creatorcontrib><description>With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to identify these novel events within a given population of variable sources. We determine the distributions of magnitude changes (dm) over time intervals (dt) for a given passband f, , and use these distributions to compute the likelihood of a test source being consistent with the population or being an outlier. We demonstrate our algorithm by applying it to the DECam multiband time-series data of more than 2000 variable stars identified by Saha et al. in the Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18 outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RS CVn stars, as well as sources in the blue horizontal branch region of the color-magnitude diagram without any known counterparts. We compare the performance of our algorithm for novelty detection with the multivariate Kernel Density Estimator and Isolation Forest on the simulated PLAsTiCC data set. We find that our algorithm yields comparable results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time alert-broker system.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab7b61</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astronomy ; Astronomy databases ; Astrophysics ; Astrostatistics ; Computer simulation ; Consumer goods ; Dwarf novae ; Galactic bulge ; Horizontal branch stars ; Microlenses ; Outliers (statistics) ; Real time ; Real variables ; Surveys ; Time domain analysis ; Time domain astronomy ; Transients (astronomy) ; Variable stars</subject><ispartof>The Astrophysical journal, 2020-04, Vol.892 (2), p.112</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Apr 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3</citedby><cites>FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3</cites><orcidid>0000-0003-4341-6172 ; 0000-0003-1700-5740 ; 0000-0001-6022-0484 ; 0000-0002-6839-4881 ; 0000-0001-6685-0479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soraisam, Monika D.</creatorcontrib><creatorcontrib>Saha, Abhijit</creatorcontrib><creatorcontrib>Matheson, Thomas</creatorcontrib><creatorcontrib>Lee, Chien-Hsiu</creatorcontrib><creatorcontrib>Narayan, Gautham</creatorcontrib><creatorcontrib>Vivas, A. Katherina</creatorcontrib><creatorcontrib>Scheidegger, Carlos</creatorcontrib><creatorcontrib>Oppermann, Niels</creatorcontrib><creatorcontrib>Olszewski, Edward W.</creatorcontrib><creatorcontrib>Sinha, Sukriti</creatorcontrib><creatorcontrib>DeSantis, Sarah R.</creatorcontrib><creatorcontrib>ANTARES collaboration</creatorcontrib><title>A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to identify these novel events within a given population of variable sources. We determine the distributions of magnitude changes (dm) over time intervals (dt) for a given passband f, , and use these distributions to compute the likelihood of a test source being consistent with the population or being an outlier. We demonstrate our algorithm by applying it to the DECam multiband time-series data of more than 2000 variable stars identified by Saha et al. in the Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18 outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RS CVn stars, as well as sources in the blue horizontal branch region of the color-magnitude diagram without any known counterparts. We compare the performance of our algorithm for novelty detection with the multivariate Kernel Density Estimator and Isolation Forest on the simulated PLAsTiCC data set. We find that our algorithm yields comparable results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time alert-broker system.</description><subject>Algorithms</subject><subject>Astronomy</subject><subject>Astronomy databases</subject><subject>Astrophysics</subject><subject>Astrostatistics</subject><subject>Computer simulation</subject><subject>Consumer goods</subject><subject>Dwarf novae</subject><subject>Galactic bulge</subject><subject>Horizontal branch stars</subject><subject>Microlenses</subject><subject>Outliers (statistics)</subject><subject>Real time</subject><subject>Real variables</subject><subject>Surveys</subject><subject>Time domain analysis</subject><subject>Time domain astronomy</subject><subject>Transients (astronomy)</subject><subject>Variable stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1r3DAQxUVpIdu09xwFIbc60cfalo_bzUcLSxvYbelNjKVxosW2XEmb0L-p_2Rs3DSX0tMww--9B28IOeHsXKplecFzqbKlzMsLqMu64K_I4u_pNVkwxpZZIcsfR-RtjPtpFVW1IL9XdN1CjK5xBpLzPV21dz64dN_Rxge6cx1m1nfgevrFP2CbHEY6LrcBBwizZAI32-1u1GJI8ZyuhqF99kuefofgoG6RbhOESKG3dBegjw77FOklJjQJLX0cU-nl1Rq6KSDdI72BFkxyhn48tHf4jrxpoI34_s88Jt-ur3brT9nm683n9WqTGalYyqyxBbfCMpmr0nDFmUUhUCyZUk1Ts7JqrDVgpVClULllNeZCFkzVNWNQgjwmp7PvEPzPA8ak9_4Q-jFSC6mKqpBKspFiM2WCjzFgo4fgOgi_NGd6eome-tdT_3p-ySj5MEucH148_4Of_QOHYa9VJbTQnAs92EY-AYefm4g</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Soraisam, Monika D.</creator><creator>Saha, Abhijit</creator><creator>Matheson, Thomas</creator><creator>Lee, Chien-Hsiu</creator><creator>Narayan, Gautham</creator><creator>Vivas, A. Katherina</creator><creator>Scheidegger, Carlos</creator><creator>Oppermann, Niels</creator><creator>Olszewski, Edward W.</creator><creator>Sinha, Sukriti</creator><creator>DeSantis, Sarah R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4341-6172</orcidid><orcidid>https://orcid.org/0000-0003-1700-5740</orcidid><orcidid>https://orcid.org/0000-0001-6022-0484</orcidid><orcidid>https://orcid.org/0000-0002-6839-4881</orcidid><orcidid>https://orcid.org/0000-0001-6685-0479</orcidid></search><sort><creationdate>20200401</creationdate><title>A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge</title><author>Soraisam, Monika D. ; Saha, Abhijit ; Matheson, Thomas ; Lee, Chien-Hsiu ; Narayan, Gautham ; Vivas, A. Katherina ; Scheidegger, Carlos ; Oppermann, Niels ; Olszewski, Edward W. ; Sinha, Sukriti ; DeSantis, Sarah R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Astronomy</topic><topic>Astronomy databases</topic><topic>Astrophysics</topic><topic>Astrostatistics</topic><topic>Computer simulation</topic><topic>Consumer goods</topic><topic>Dwarf novae</topic><topic>Galactic bulge</topic><topic>Horizontal branch stars</topic><topic>Microlenses</topic><topic>Outliers (statistics)</topic><topic>Real time</topic><topic>Real variables</topic><topic>Surveys</topic><topic>Time domain analysis</topic><topic>Time domain astronomy</topic><topic>Transients (astronomy)</topic><topic>Variable stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soraisam, Monika D.</creatorcontrib><creatorcontrib>Saha, Abhijit</creatorcontrib><creatorcontrib>Matheson, Thomas</creatorcontrib><creatorcontrib>Lee, Chien-Hsiu</creatorcontrib><creatorcontrib>Narayan, Gautham</creatorcontrib><creatorcontrib>Vivas, A. Katherina</creatorcontrib><creatorcontrib>Scheidegger, Carlos</creatorcontrib><creatorcontrib>Oppermann, Niels</creatorcontrib><creatorcontrib>Olszewski, Edward W.</creatorcontrib><creatorcontrib>Sinha, Sukriti</creatorcontrib><creatorcontrib>DeSantis, Sarah R.</creatorcontrib><creatorcontrib>ANTARES collaboration</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soraisam, Monika D.</au><au>Saha, Abhijit</au><au>Matheson, Thomas</au><au>Lee, Chien-Hsiu</au><au>Narayan, Gautham</au><au>Vivas, A. Katherina</au><au>Scheidegger, Carlos</au><au>Oppermann, Niels</au><au>Olszewski, Edward W.</au><au>Sinha, Sukriti</au><au>DeSantis, Sarah R.</au><aucorp>ANTARES collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>892</volume><issue>2</issue><spage>112</spage><pages>112-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>With the advent of the Legacy Survey of Space and Time, time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to identify these novel events within a given population of variable sources. We determine the distributions of magnitude changes (dm) over time intervals (dt) for a given passband f, , and use these distributions to compute the likelihood of a test source being consistent with the population or being an outlier. We demonstrate our algorithm by applying it to the DECam multiband time-series data of more than 2000 variable stars identified by Saha et al. in the Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18 outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RS CVn stars, as well as sources in the blue horizontal branch region of the color-magnitude diagram without any known counterparts. We compare the performance of our algorithm for novelty detection with the multivariate Kernel Density Estimator and Isolation Forest on the simulated PLAsTiCC data set. We find that our algorithm yields comparable results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time alert-broker system.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab7b61</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4341-6172</orcidid><orcidid>https://orcid.org/0000-0003-1700-5740</orcidid><orcidid>https://orcid.org/0000-0001-6022-0484</orcidid><orcidid>https://orcid.org/0000-0002-6839-4881</orcidid><orcidid>https://orcid.org/0000-0001-6685-0479</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-04, Vol.892 (2), p.112 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ab7b61 |
source | EZB Electronic Journals Library |
subjects | Algorithms Astronomy Astronomy databases Astrophysics Astrostatistics Computer simulation Consumer goods Dwarf novae Galactic bulge Horizontal branch stars Microlenses Outliers (statistics) Real time Real variables Surveys Time domain analysis Time domain astronomy Transients (astronomy) Variable stars |
title | A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Classification%20Algorithm%20for%20Time-domain%20Novelties%20in%20Preparation%20for%20LSST%20Alerts.%20Application%20to%20Variable%20Stars%20and%20Transients%20Detected%20with%20DECam%20in%20the%20Galactic%20Bulge&rft.jtitle=The%20Astrophysical%20journal&rft.au=Soraisam,%20Monika%20D.&rft.aucorp=ANTARES%C2%A0collaboration&rft.date=2020-04-01&rft.volume=892&rft.issue=2&rft.spage=112&rft.pages=112-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab7b61&rft_dat=%3Cproquest_iop_j%3E2386963830%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-dcd61d2d03587c1810de22e24088ffb079fddcad3287285d0be523608bb00a7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386963830&rft_id=info:pmid/&rfr_iscdi=true |