Loading…

Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton

W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B,...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2020-11, Vol.903 (2), p.108
Main Authors: Holland-Ashford, Tyler, Lopez, Laura A., Auchettl, Katie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3
cites cdi_FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3
container_end_page
container_issue 2
container_start_page 108
container_title The Astrophysical journal
container_volume 903
creator Holland-Ashford, Tyler
Lopez, Laura A.
Auchettl, Katie
description W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a three-component model (with one interstellar medium and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings depart from these prior works, as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. Based on estimated timescales, we show that both large- and small-scale thermal conduction can explain the observed overionization of the hotter ejecta. However, overionization of the cooler ejecta is only possible through small-scale thermal conduction resulting in evaporation of embedded, dense clouds with sizes ≲1 pc.
doi_str_mv 10.3847/1538-4357/abb808
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abb808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458986730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4MoOKd3jwXxZl2apE1y1KFT2FScw93Ca9JIR9fUplX239tS0Yt4erwf3-89-BA6jfAlFYxPopiKkNGYTyBNBRZ7aPQT7aMRxpiFCeXrQ3Tk_aZfiZQjNFtW0ORQFLvgOfOu-MhMsGxaswuc7RLttmle5uVb8FSA30KQl8Erk9fByvfherEIH7LPxpXH6MBC4bOT7zlGq9ubl-ldOH-c3U-v5qFmLGlCbiJmuJUsJpJACoZLZiijIpWaS0GIxjrRACTGEDOgmtCMmBSwlZSm1tIxOhvuVrV7bzPfqI1r67J7qQiLhRQJp7ij8EDp2nlfZ1ZVdb6FeqcirHpdqnejejdq0NVVLoZK7qrfm__g53_gUG2UxFSRrihUZSz9Aiibdw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458986730</pqid></control><display><type>article</type><title>Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton</title><source>EZB Electronic Journals Library</source><creator>Holland-Ashford, Tyler ; Lopez, Laura A. ; Auchettl, Katie</creator><creatorcontrib>Holland-Ashford, Tyler ; Lopez, Laura A. ; Auchettl, Katie</creatorcontrib><description>W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a three-component model (with one interstellar medium and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings depart from these prior works, as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. Based on estimated timescales, we show that both large- and small-scale thermal conduction can explain the observed overionization of the hotter ejecta. However, overionization of the cooler ejecta is only possible through small-scale thermal conduction resulting in evaporation of embedded, dense clouds with sizes ≲1 pc.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abb808</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Adiabatic flow ; Astrophysics ; Conduction cooling ; Cooling ; Dense interstellar clouds ; Ejecta ; Evaporation ; Interstellar matter ; Interstellar medium ; Plasma ; Radiative recombination ; Supernova ; Supernova remnants ; X-ray astronomy ; XMM (spacecraft)</subject><ispartof>The Astrophysical journal, 2020-11, Vol.903 (2), p.108</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3</citedby><cites>FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3</cites><orcidid>0000-0002-7643-0504 ; 0000-0002-4449-9152 ; 0000-0002-1790-3148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Holland-Ashford, Tyler</creatorcontrib><creatorcontrib>Lopez, Laura A.</creatorcontrib><creatorcontrib>Auchettl, Katie</creatorcontrib><title>Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a three-component model (with one interstellar medium and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings depart from these prior works, as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. Based on estimated timescales, we show that both large- and small-scale thermal conduction can explain the observed overionization of the hotter ejecta. However, overionization of the cooler ejecta is only possible through small-scale thermal conduction resulting in evaporation of embedded, dense clouds with sizes ≲1 pc.</description><subject>Adiabatic flow</subject><subject>Astrophysics</subject><subject>Conduction cooling</subject><subject>Cooling</subject><subject>Dense interstellar clouds</subject><subject>Ejecta</subject><subject>Evaporation</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Plasma</subject><subject>Radiative recombination</subject><subject>Supernova</subject><subject>Supernova remnants</subject><subject>X-ray astronomy</subject><subject>XMM (spacecraft)</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUh4MoOKd3jwXxZl2apE1y1KFT2FScw93Ca9JIR9fUplX239tS0Yt4erwf3-89-BA6jfAlFYxPopiKkNGYTyBNBRZ7aPQT7aMRxpiFCeXrQ3Tk_aZfiZQjNFtW0ORQFLvgOfOu-MhMsGxaswuc7RLttmle5uVb8FSA30KQl8Erk9fByvfherEIH7LPxpXH6MBC4bOT7zlGq9ubl-ldOH-c3U-v5qFmLGlCbiJmuJUsJpJACoZLZiijIpWaS0GIxjrRACTGEDOgmtCMmBSwlZSm1tIxOhvuVrV7bzPfqI1r67J7qQiLhRQJp7ij8EDp2nlfZ1ZVdb6FeqcirHpdqnejejdq0NVVLoZK7qrfm__g53_gUG2UxFSRrihUZSz9Aiibdw8</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Holland-Ashford, Tyler</creator><creator>Lopez, Laura A.</creator><creator>Auchettl, Katie</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7643-0504</orcidid><orcidid>https://orcid.org/0000-0002-4449-9152</orcidid><orcidid>https://orcid.org/0000-0002-1790-3148</orcidid></search><sort><creationdate>20201101</creationdate><title>Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton</title><author>Holland-Ashford, Tyler ; Lopez, Laura A. ; Auchettl, Katie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adiabatic flow</topic><topic>Astrophysics</topic><topic>Conduction cooling</topic><topic>Cooling</topic><topic>Dense interstellar clouds</topic><topic>Ejecta</topic><topic>Evaporation</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Plasma</topic><topic>Radiative recombination</topic><topic>Supernova</topic><topic>Supernova remnants</topic><topic>X-ray astronomy</topic><topic>XMM (spacecraft)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holland-Ashford, Tyler</creatorcontrib><creatorcontrib>Lopez, Laura A.</creatorcontrib><creatorcontrib>Auchettl, Katie</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holland-Ashford, Tyler</au><au>Lopez, Laura A.</au><au>Auchettl, Katie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>903</volume><issue>2</issue><spage>108</spage><pages>108-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a three-component model (with one interstellar medium and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings depart from these prior works, as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. Based on estimated timescales, we show that both large- and small-scale thermal conduction can explain the observed overionization of the hotter ejecta. However, overionization of the cooler ejecta is only possible through small-scale thermal conduction resulting in evaporation of embedded, dense clouds with sizes ≲1 pc.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abb808</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7643-0504</orcidid><orcidid>https://orcid.org/0000-0002-4449-9152</orcidid><orcidid>https://orcid.org/0000-0002-1790-3148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-11, Vol.903 (2), p.108
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_abb808
source EZB Electronic Journals Library
subjects Adiabatic flow
Astrophysics
Conduction cooling
Cooling
Dense interstellar clouds
Ejecta
Evaporation
Interstellar matter
Interstellar medium
Plasma
Radiative recombination
Supernova
Supernova remnants
X-ray astronomy
XMM (spacecraft)
title Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Resolved%20Study%20of%20Recombining%20Plasma%20in%20W49B%20Using%20XMM-Newton&rft.jtitle=The%20Astrophysical%20journal&rft.au=Holland-Ashford,%20Tyler&rft.date=2020-11-01&rft.volume=903&rft.issue=2&rft.spage=108&rft.pages=108-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abb808&rft_dat=%3Cproquest_iop_j%3E2458986730%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458986730&rft_id=info:pmid/&rfr_iscdi=true