Loading…
Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton
W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B,...
Saved in:
Published in: | The Astrophysical journal 2020-11, Vol.903 (2), p.108 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3 |
container_end_page | |
container_issue | 2 |
container_start_page | 108 |
container_title | The Astrophysical journal |
container_volume | 903 |
creator | Holland-Ashford, Tyler Lopez, Laura A. Auchettl, Katie |
description | W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a three-component model (with one interstellar medium and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings depart from these prior works, as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. Based on estimated timescales, we show that both large- and small-scale thermal conduction can explain the observed overionization of the hotter ejecta. However, overionization of the cooler ejecta is only possible through small-scale thermal conduction resulting in evaporation of embedded, dense clouds with sizes ≲1 pc. |
doi_str_mv | 10.3847/1538-4357/abb808 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abb808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458986730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4MoOKd3jwXxZl2apE1y1KFT2FScw93Ca9JIR9fUplX239tS0Yt4erwf3-89-BA6jfAlFYxPopiKkNGYTyBNBRZ7aPQT7aMRxpiFCeXrQ3Tk_aZfiZQjNFtW0ORQFLvgOfOu-MhMsGxaswuc7RLttmle5uVb8FSA30KQl8Erk9fByvfherEIH7LPxpXH6MBC4bOT7zlGq9ubl-ldOH-c3U-v5qFmLGlCbiJmuJUsJpJACoZLZiijIpWaS0GIxjrRACTGEDOgmtCMmBSwlZSm1tIxOhvuVrV7bzPfqI1r67J7qQiLhRQJp7ij8EDp2nlfZ1ZVdb6FeqcirHpdqnejejdq0NVVLoZK7qrfm__g53_gUG2UxFSRrihUZSz9Aiibdw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458986730</pqid></control><display><type>article</type><title>Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton</title><source>EZB Electronic Journals Library</source><creator>Holland-Ashford, Tyler ; Lopez, Laura A. ; Auchettl, Katie</creator><creatorcontrib>Holland-Ashford, Tyler ; Lopez, Laura A. ; Auchettl, Katie</creatorcontrib><description>W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a three-component model (with one interstellar medium and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings depart from these prior works, as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. Based on estimated timescales, we show that both large- and small-scale thermal conduction can explain the observed overionization of the hotter ejecta. However, overionization of the cooler ejecta is only possible through small-scale thermal conduction resulting in evaporation of embedded, dense clouds with sizes ≲1 pc.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abb808</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Adiabatic flow ; Astrophysics ; Conduction cooling ; Cooling ; Dense interstellar clouds ; Ejecta ; Evaporation ; Interstellar matter ; Interstellar medium ; Plasma ; Radiative recombination ; Supernova ; Supernova remnants ; X-ray astronomy ; XMM (spacecraft)</subject><ispartof>The Astrophysical journal, 2020-11, Vol.903 (2), p.108</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3</citedby><cites>FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3</cites><orcidid>0000-0002-7643-0504 ; 0000-0002-4449-9152 ; 0000-0002-1790-3148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Holland-Ashford, Tyler</creatorcontrib><creatorcontrib>Lopez, Laura A.</creatorcontrib><creatorcontrib>Auchettl, Katie</creatorcontrib><title>Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a three-component model (with one interstellar medium and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings depart from these prior works, as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. Based on estimated timescales, we show that both large- and small-scale thermal conduction can explain the observed overionization of the hotter ejecta. However, overionization of the cooler ejecta is only possible through small-scale thermal conduction resulting in evaporation of embedded, dense clouds with sizes ≲1 pc.</description><subject>Adiabatic flow</subject><subject>Astrophysics</subject><subject>Conduction cooling</subject><subject>Cooling</subject><subject>Dense interstellar clouds</subject><subject>Ejecta</subject><subject>Evaporation</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Plasma</subject><subject>Radiative recombination</subject><subject>Supernova</subject><subject>Supernova remnants</subject><subject>X-ray astronomy</subject><subject>XMM (spacecraft)</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUh4MoOKd3jwXxZl2apE1y1KFT2FScw93Ca9JIR9fUplX239tS0Yt4erwf3-89-BA6jfAlFYxPopiKkNGYTyBNBRZ7aPQT7aMRxpiFCeXrQ3Tk_aZfiZQjNFtW0ORQFLvgOfOu-MhMsGxaswuc7RLttmle5uVb8FSA30KQl8Erk9fByvfherEIH7LPxpXH6MBC4bOT7zlGq9ubl-ldOH-c3U-v5qFmLGlCbiJmuJUsJpJACoZLZiijIpWaS0GIxjrRACTGEDOgmtCMmBSwlZSm1tIxOhvuVrV7bzPfqI1r67J7qQiLhRQJp7ij8EDp2nlfZ1ZVdb6FeqcirHpdqnejejdq0NVVLoZK7qrfm__g53_gUG2UxFSRrihUZSz9Aiibdw8</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Holland-Ashford, Tyler</creator><creator>Lopez, Laura A.</creator><creator>Auchettl, Katie</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7643-0504</orcidid><orcidid>https://orcid.org/0000-0002-4449-9152</orcidid><orcidid>https://orcid.org/0000-0002-1790-3148</orcidid></search><sort><creationdate>20201101</creationdate><title>Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton</title><author>Holland-Ashford, Tyler ; Lopez, Laura A. ; Auchettl, Katie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adiabatic flow</topic><topic>Astrophysics</topic><topic>Conduction cooling</topic><topic>Cooling</topic><topic>Dense interstellar clouds</topic><topic>Ejecta</topic><topic>Evaporation</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Plasma</topic><topic>Radiative recombination</topic><topic>Supernova</topic><topic>Supernova remnants</topic><topic>X-ray astronomy</topic><topic>XMM (spacecraft)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holland-Ashford, Tyler</creatorcontrib><creatorcontrib>Lopez, Laura A.</creatorcontrib><creatorcontrib>Auchettl, Katie</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holland-Ashford, Tyler</au><au>Lopez, Laura A.</au><au>Auchettl, Katie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>903</volume><issue>2</issue><spage>108</spage><pages>108-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>W49B is the youngest supernova remnant (SNR) to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a three-component model (with one interstellar medium and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings depart from these prior works, as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. Based on estimated timescales, we show that both large- and small-scale thermal conduction can explain the observed overionization of the hotter ejecta. However, overionization of the cooler ejecta is only possible through small-scale thermal conduction resulting in evaporation of embedded, dense clouds with sizes ≲1 pc.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abb808</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7643-0504</orcidid><orcidid>https://orcid.org/0000-0002-4449-9152</orcidid><orcidid>https://orcid.org/0000-0002-1790-3148</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-11, Vol.903 (2), p.108 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_abb808 |
source | EZB Electronic Journals Library |
subjects | Adiabatic flow Astrophysics Conduction cooling Cooling Dense interstellar clouds Ejecta Evaporation Interstellar matter Interstellar medium Plasma Radiative recombination Supernova Supernova remnants X-ray astronomy XMM (spacecraft) |
title | Spatially Resolved Study of Recombining Plasma in W49B Using XMM-Newton |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Resolved%20Study%20of%20Recombining%20Plasma%20in%20W49B%20Using%20XMM-Newton&rft.jtitle=The%20Astrophysical%20journal&rft.au=Holland-Ashford,%20Tyler&rft.date=2020-11-01&rft.volume=903&rft.issue=2&rft.spage=108&rft.pages=108-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abb808&rft_dat=%3Cproquest_iop_j%3E2458986730%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-7d14d7f945292abad794d3438b9c79822c0c6caa250a54a3c23e2dba0f933bff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458986730&rft_id=info:pmid/&rfr_iscdi=true |