Loading…

Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust

We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supe...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2021-02, Vol.908 (1), p.38
Main Authors: Schulte, Jack, Bose, Maitrayee, Young, Patrick A., Vance, Gregory S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3
cites cdi_FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3
container_end_page
container_issue 1
container_start_page 38
container_title The Astrophysical journal
container_volume 908
creator Schulte, Jack
Bose, Maitrayee
Young, Patrick A.
Vance, Gregory S.
description We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supernova models predict similar carbon and nitrogen compositions to SiC X grains and grains with 12C/13C < 20 and 14N/15N < 60, which we will hereafter refer to as SiC 'D' grains. Material from the interior of a 15 explosion reaches high enough temperatures shortly after core collapse to produce the large enrichments of 13C and 15N necessary to replicate the compositions of SiC D grains. The innermost ejecta in a core-collapse supernova is operating in the neutrino-driven regime and undergoes fast proton capture after being heated by the supernova shockwave. Both 3D models predict 0.3 Al/27Al < 1.5, comparable to the ratios seen in SiC X, C, and D grains. Models 15S and 15A, in general, predict very large anomalies in calcium isotopes but do compare qualitatively with the SiC X grain measurements that show 44Ca and 43Ca excesses. The titanium isotopic compositions of SiC X grains are well reproduced. The models predict 57Fe excesses and depletions that are observed in SiC X grains, and in addition predict accurately the 60Ni/58Ni, 61Ni/58Ni, and 62Ni/58Ni ratios in SiC X grains, as a result of fast neutron captures initiated by the propagation of the supernova shockwave. Finally, symmetry has a noticeable effect on the production of silicon, sulfur, and iron isotopes in the SN ejecta.
doi_str_mv 10.3847/1538-4357/abcd41
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abcd41</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489756311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd3jwE9Wpc0SZMeZfhjMJ2wHryFrEm2jK2pSTvxv7elohfx9PF9PO8L3wPAJUa3RFA-wYyIhBLGJ2pVaoqPwOjndAxGCCGaZIS_nYKzGLf9mub5CBTFJhiTaLc3VXS-Uju4bGsTKn9Q8Nlrs4vwNfiD0wa-mA8466j1ponQVY2HzcbARXBrV0XoLVw2Kug2NufgxKpdNBffcwyKh_ti-pTMF4-z6d08KQnPm0Qxkop0pZhJOdNCYyHYiqGSp4xxZjHPc6GtVllmS5sTmuFUUYENwoKW1JAxuBpq6-DfWxMbufVt6F6IMqUi5ywjGHcUGqgy-BiDsbIObq_Cp8RI9upk70n2nuSgrovcDBHn69_Of_DrP3BVb2WOhMRdStbaki_Xenxb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489756311</pqid></control><display><type>article</type><title>Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust</title><source>EZB Electronic Journals Library</source><creator>Schulte, Jack ; Bose, Maitrayee ; Young, Patrick A. ; Vance, Gregory S.</creator><creatorcontrib>Schulte, Jack ; Bose, Maitrayee ; Young, Patrick A. ; Vance, Gregory S.</creatorcontrib><description>We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supernova models predict similar carbon and nitrogen compositions to SiC X grains and grains with 12C/13C &lt; 20 and 14N/15N &lt; 60, which we will hereafter refer to as SiC 'D' grains. Material from the interior of a 15 explosion reaches high enough temperatures shortly after core collapse to produce the large enrichments of 13C and 15N necessary to replicate the compositions of SiC D grains. The innermost ejecta in a core-collapse supernova is operating in the neutrino-driven regime and undergoes fast proton capture after being heated by the supernova shockwave. Both 3D models predict 0.3 Al/27Al &lt; 1.5, comparable to the ratios seen in SiC X, C, and D grains. Models 15S and 15A, in general, predict very large anomalies in calcium isotopes but do compare qualitatively with the SiC X grain measurements that show 44Ca and 43Ca excesses. The titanium isotopic compositions of SiC X grains are well reproduced. The models predict 57Fe excesses and depletions that are observed in SiC X grains, and in addition predict accurately the 60Ni/58Ni, 61Ni/58Ni, and 62Ni/58Ni ratios in SiC X grains, as a result of fast neutron captures initiated by the propagation of the supernova shockwave. Finally, symmetry has a noticeable effect on the production of silicon, sulfur, and iron isotopes in the SN ejecta.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abcd41</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aluminum ; Anomalies ; Asteroids ; Astrophysics ; Calcium ; Calcium isotopes ; Chondrites ; Collapse ; Composition ; Core-collapse supernovae ; Ejecta ; Fast neutrons ; Iron 57 ; Iron isotopes ; Isotope composition ; Isotopes ; Laboratory astrophysics ; Meteorite composition ; Meteorites ; Neutrinos ; Nickel ; Nitrogen ; Nitrogen isotopes ; Shock waves ; Silicon ; Small solar system bodies ; Stellar evolution ; Stellar evolutionary models ; Stellar winds ; Sulfur ; Supernova ; Supernovae ; Theoretical models ; Three dimensional models ; Titanium ; Type II supernovae</subject><ispartof>The Astrophysical journal, 2021-02, Vol.908 (1), p.38</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3</citedby><cites>FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3</cites><orcidid>0000-0002-7978-6370 ; 0000-0002-0984-4117 ; 0000-0003-1705-5991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Schulte, Jack</creatorcontrib><creatorcontrib>Bose, Maitrayee</creatorcontrib><creatorcontrib>Young, Patrick A.</creatorcontrib><creatorcontrib>Vance, Gregory S.</creatorcontrib><title>Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supernova models predict similar carbon and nitrogen compositions to SiC X grains and grains with 12C/13C &lt; 20 and 14N/15N &lt; 60, which we will hereafter refer to as SiC 'D' grains. Material from the interior of a 15 explosion reaches high enough temperatures shortly after core collapse to produce the large enrichments of 13C and 15N necessary to replicate the compositions of SiC D grains. The innermost ejecta in a core-collapse supernova is operating in the neutrino-driven regime and undergoes fast proton capture after being heated by the supernova shockwave. Both 3D models predict 0.3 Al/27Al &lt; 1.5, comparable to the ratios seen in SiC X, C, and D grains. Models 15S and 15A, in general, predict very large anomalies in calcium isotopes but do compare qualitatively with the SiC X grain measurements that show 44Ca and 43Ca excesses. The titanium isotopic compositions of SiC X grains are well reproduced. The models predict 57Fe excesses and depletions that are observed in SiC X grains, and in addition predict accurately the 60Ni/58Ni, 61Ni/58Ni, and 62Ni/58Ni ratios in SiC X grains, as a result of fast neutron captures initiated by the propagation of the supernova shockwave. Finally, symmetry has a noticeable effect on the production of silicon, sulfur, and iron isotopes in the SN ejecta.</description><subject>Aluminum</subject><subject>Anomalies</subject><subject>Asteroids</subject><subject>Astrophysics</subject><subject>Calcium</subject><subject>Calcium isotopes</subject><subject>Chondrites</subject><subject>Collapse</subject><subject>Composition</subject><subject>Core-collapse supernovae</subject><subject>Ejecta</subject><subject>Fast neutrons</subject><subject>Iron 57</subject><subject>Iron isotopes</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Laboratory astrophysics</subject><subject>Meteorite composition</subject><subject>Meteorites</subject><subject>Neutrinos</subject><subject>Nickel</subject><subject>Nitrogen</subject><subject>Nitrogen isotopes</subject><subject>Shock waves</subject><subject>Silicon</subject><subject>Small solar system bodies</subject><subject>Stellar evolution</subject><subject>Stellar evolutionary models</subject><subject>Stellar winds</subject><subject>Sulfur</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Theoretical models</subject><subject>Three dimensional models</subject><subject>Titanium</subject><subject>Type II supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd3jwE9Wpc0SZMeZfhjMJ2wHryFrEm2jK2pSTvxv7elohfx9PF9PO8L3wPAJUa3RFA-wYyIhBLGJ2pVaoqPwOjndAxGCCGaZIS_nYKzGLf9mub5CBTFJhiTaLc3VXS-Uju4bGsTKn9Q8Nlrs4vwNfiD0wa-mA8466j1ponQVY2HzcbARXBrV0XoLVw2Kug2NufgxKpdNBffcwyKh_ti-pTMF4-z6d08KQnPm0Qxkop0pZhJOdNCYyHYiqGSp4xxZjHPc6GtVllmS5sTmuFUUYENwoKW1JAxuBpq6-DfWxMbufVt6F6IMqUi5ywjGHcUGqgy-BiDsbIObq_Cp8RI9upk70n2nuSgrovcDBHn69_Of_DrP3BVb2WOhMRdStbaki_Xenxb</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Schulte, Jack</creator><creator>Bose, Maitrayee</creator><creator>Young, Patrick A.</creator><creator>Vance, Gregory S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7978-6370</orcidid><orcidid>https://orcid.org/0000-0002-0984-4117</orcidid><orcidid>https://orcid.org/0000-0003-1705-5991</orcidid></search><sort><creationdate>20210201</creationdate><title>Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust</title><author>Schulte, Jack ; Bose, Maitrayee ; Young, Patrick A. ; Vance, Gregory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Anomalies</topic><topic>Asteroids</topic><topic>Astrophysics</topic><topic>Calcium</topic><topic>Calcium isotopes</topic><topic>Chondrites</topic><topic>Collapse</topic><topic>Composition</topic><topic>Core-collapse supernovae</topic><topic>Ejecta</topic><topic>Fast neutrons</topic><topic>Iron 57</topic><topic>Iron isotopes</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Laboratory astrophysics</topic><topic>Meteorite composition</topic><topic>Meteorites</topic><topic>Neutrinos</topic><topic>Nickel</topic><topic>Nitrogen</topic><topic>Nitrogen isotopes</topic><topic>Shock waves</topic><topic>Silicon</topic><topic>Small solar system bodies</topic><topic>Stellar evolution</topic><topic>Stellar evolutionary models</topic><topic>Stellar winds</topic><topic>Sulfur</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Theoretical models</topic><topic>Three dimensional models</topic><topic>Titanium</topic><topic>Type II supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulte, Jack</creatorcontrib><creatorcontrib>Bose, Maitrayee</creatorcontrib><creatorcontrib>Young, Patrick A.</creatorcontrib><creatorcontrib>Vance, Gregory S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulte, Jack</au><au>Bose, Maitrayee</au><au>Young, Patrick A.</au><au>Vance, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>908</volume><issue>1</issue><spage>38</spage><pages>38-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supernova models predict similar carbon and nitrogen compositions to SiC X grains and grains with 12C/13C &lt; 20 and 14N/15N &lt; 60, which we will hereafter refer to as SiC 'D' grains. Material from the interior of a 15 explosion reaches high enough temperatures shortly after core collapse to produce the large enrichments of 13C and 15N necessary to replicate the compositions of SiC D grains. The innermost ejecta in a core-collapse supernova is operating in the neutrino-driven regime and undergoes fast proton capture after being heated by the supernova shockwave. Both 3D models predict 0.3 Al/27Al &lt; 1.5, comparable to the ratios seen in SiC X, C, and D grains. Models 15S and 15A, in general, predict very large anomalies in calcium isotopes but do compare qualitatively with the SiC X grain measurements that show 44Ca and 43Ca excesses. The titanium isotopic compositions of SiC X grains are well reproduced. The models predict 57Fe excesses and depletions that are observed in SiC X grains, and in addition predict accurately the 60Ni/58Ni, 61Ni/58Ni, and 62Ni/58Ni ratios in SiC X grains, as a result of fast neutron captures initiated by the propagation of the supernova shockwave. Finally, symmetry has a noticeable effect on the production of silicon, sulfur, and iron isotopes in the SN ejecta.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abcd41</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7978-6370</orcidid><orcidid>https://orcid.org/0000-0002-0984-4117</orcidid><orcidid>https://orcid.org/0000-0003-1705-5991</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-02, Vol.908 (1), p.38
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_abcd41
source EZB Electronic Journals Library
subjects Aluminum
Anomalies
Asteroids
Astrophysics
Calcium
Calcium isotopes
Chondrites
Collapse
Composition
Core-collapse supernovae
Ejecta
Fast neutrons
Iron 57
Iron isotopes
Isotope composition
Isotopes
Laboratory astrophysics
Meteorite composition
Meteorites
Neutrinos
Nickel
Nitrogen
Nitrogen isotopes
Shock waves
Silicon
Small solar system bodies
Stellar evolution
Stellar evolutionary models
Stellar winds
Sulfur
Supernova
Supernovae
Theoretical models
Three dimensional models
Titanium
Type II supernovae
title Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20Supernova%20Models%20Provide%20New%20Insights%20into%20the%20Origins%20of%20Stardust&rft.jtitle=The%20Astrophysical%20journal&rft.au=Schulte,%20Jack&rft.date=2021-02-01&rft.volume=908&rft.issue=1&rft.spage=38&rft.pages=38-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abcd41&rft_dat=%3Cproquest_iop_j%3E2489756311%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489756311&rft_id=info:pmid/&rfr_iscdi=true