Loading…
Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust
We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supe...
Saved in:
Published in: | The Astrophysical journal 2021-02, Vol.908 (1), p.38 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3 |
container_end_page | |
container_issue | 1 |
container_start_page | 38 |
container_title | The Astrophysical journal |
container_volume | 908 |
creator | Schulte, Jack Bose, Maitrayee Young, Patrick A. Vance, Gregory S. |
description | We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supernova models predict similar carbon and nitrogen compositions to SiC X grains and grains with 12C/13C < 20 and 14N/15N < 60, which we will hereafter refer to as SiC 'D' grains. Material from the interior of a 15 explosion reaches high enough temperatures shortly after core collapse to produce the large enrichments of 13C and 15N necessary to replicate the compositions of SiC D grains. The innermost ejecta in a core-collapse supernova is operating in the neutrino-driven regime and undergoes fast proton capture after being heated by the supernova shockwave. Both 3D models predict 0.3 Al/27Al < 1.5, comparable to the ratios seen in SiC X, C, and D grains. Models 15S and 15A, in general, predict very large anomalies in calcium isotopes but do compare qualitatively with the SiC X grain measurements that show 44Ca and 43Ca excesses. The titanium isotopic compositions of SiC X grains are well reproduced. The models predict 57Fe excesses and depletions that are observed in SiC X grains, and in addition predict accurately the 60Ni/58Ni, 61Ni/58Ni, and 62Ni/58Ni ratios in SiC X grains, as a result of fast neutron captures initiated by the propagation of the supernova shockwave. Finally, symmetry has a noticeable effect on the production of silicon, sulfur, and iron isotopes in the SN ejecta. |
doi_str_mv | 10.3847/1538-4357/abcd41 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abcd41</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489756311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd3jwE9Wpc0SZMeZfhjMJ2wHryFrEm2jK2pSTvxv7elohfx9PF9PO8L3wPAJUa3RFA-wYyIhBLGJ2pVaoqPwOjndAxGCCGaZIS_nYKzGLf9mub5CBTFJhiTaLc3VXS-Uju4bGsTKn9Q8Nlrs4vwNfiD0wa-mA8466j1ponQVY2HzcbARXBrV0XoLVw2Kug2NufgxKpdNBffcwyKh_ti-pTMF4-z6d08KQnPm0Qxkop0pZhJOdNCYyHYiqGSp4xxZjHPc6GtVllmS5sTmuFUUYENwoKW1JAxuBpq6-DfWxMbufVt6F6IMqUi5ywjGHcUGqgy-BiDsbIObq_Cp8RI9upk70n2nuSgrovcDBHn69_Of_DrP3BVb2WOhMRdStbaki_Xenxb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489756311</pqid></control><display><type>article</type><title>Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust</title><source>EZB Electronic Journals Library</source><creator>Schulte, Jack ; Bose, Maitrayee ; Young, Patrick A. ; Vance, Gregory S.</creator><creatorcontrib>Schulte, Jack ; Bose, Maitrayee ; Young, Patrick A. ; Vance, Gregory S.</creatorcontrib><description>We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supernova models predict similar carbon and nitrogen compositions to SiC X grains and grains with 12C/13C < 20 and 14N/15N < 60, which we will hereafter refer to as SiC 'D' grains. Material from the interior of a 15 explosion reaches high enough temperatures shortly after core collapse to produce the large enrichments of 13C and 15N necessary to replicate the compositions of SiC D grains. The innermost ejecta in a core-collapse supernova is operating in the neutrino-driven regime and undergoes fast proton capture after being heated by the supernova shockwave. Both 3D models predict 0.3 Al/27Al < 1.5, comparable to the ratios seen in SiC X, C, and D grains. Models 15S and 15A, in general, predict very large anomalies in calcium isotopes but do compare qualitatively with the SiC X grain measurements that show 44Ca and 43Ca excesses. The titanium isotopic compositions of SiC X grains are well reproduced. The models predict 57Fe excesses and depletions that are observed in SiC X grains, and in addition predict accurately the 60Ni/58Ni, 61Ni/58Ni, and 62Ni/58Ni ratios in SiC X grains, as a result of fast neutron captures initiated by the propagation of the supernova shockwave. Finally, symmetry has a noticeable effect on the production of silicon, sulfur, and iron isotopes in the SN ejecta.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abcd41</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aluminum ; Anomalies ; Asteroids ; Astrophysics ; Calcium ; Calcium isotopes ; Chondrites ; Collapse ; Composition ; Core-collapse supernovae ; Ejecta ; Fast neutrons ; Iron 57 ; Iron isotopes ; Isotope composition ; Isotopes ; Laboratory astrophysics ; Meteorite composition ; Meteorites ; Neutrinos ; Nickel ; Nitrogen ; Nitrogen isotopes ; Shock waves ; Silicon ; Small solar system bodies ; Stellar evolution ; Stellar evolutionary models ; Stellar winds ; Sulfur ; Supernova ; Supernovae ; Theoretical models ; Three dimensional models ; Titanium ; Type II supernovae</subject><ispartof>The Astrophysical journal, 2021-02, Vol.908 (1), p.38</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3</citedby><cites>FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3</cites><orcidid>0000-0002-7978-6370 ; 0000-0002-0984-4117 ; 0000-0003-1705-5991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Schulte, Jack</creatorcontrib><creatorcontrib>Bose, Maitrayee</creatorcontrib><creatorcontrib>Young, Patrick A.</creatorcontrib><creatorcontrib>Vance, Gregory S.</creatorcontrib><title>Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supernova models predict similar carbon and nitrogen compositions to SiC X grains and grains with 12C/13C < 20 and 14N/15N < 60, which we will hereafter refer to as SiC 'D' grains. Material from the interior of a 15 explosion reaches high enough temperatures shortly after core collapse to produce the large enrichments of 13C and 15N necessary to replicate the compositions of SiC D grains. The innermost ejecta in a core-collapse supernova is operating in the neutrino-driven regime and undergoes fast proton capture after being heated by the supernova shockwave. Both 3D models predict 0.3 Al/27Al < 1.5, comparable to the ratios seen in SiC X, C, and D grains. Models 15S and 15A, in general, predict very large anomalies in calcium isotopes but do compare qualitatively with the SiC X grain measurements that show 44Ca and 43Ca excesses. The titanium isotopic compositions of SiC X grains are well reproduced. The models predict 57Fe excesses and depletions that are observed in SiC X grains, and in addition predict accurately the 60Ni/58Ni, 61Ni/58Ni, and 62Ni/58Ni ratios in SiC X grains, as a result of fast neutron captures initiated by the propagation of the supernova shockwave. Finally, symmetry has a noticeable effect on the production of silicon, sulfur, and iron isotopes in the SN ejecta.</description><subject>Aluminum</subject><subject>Anomalies</subject><subject>Asteroids</subject><subject>Astrophysics</subject><subject>Calcium</subject><subject>Calcium isotopes</subject><subject>Chondrites</subject><subject>Collapse</subject><subject>Composition</subject><subject>Core-collapse supernovae</subject><subject>Ejecta</subject><subject>Fast neutrons</subject><subject>Iron 57</subject><subject>Iron isotopes</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Laboratory astrophysics</subject><subject>Meteorite composition</subject><subject>Meteorites</subject><subject>Neutrinos</subject><subject>Nickel</subject><subject>Nitrogen</subject><subject>Nitrogen isotopes</subject><subject>Shock waves</subject><subject>Silicon</subject><subject>Small solar system bodies</subject><subject>Stellar evolution</subject><subject>Stellar evolutionary models</subject><subject>Stellar winds</subject><subject>Sulfur</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Theoretical models</subject><subject>Three dimensional models</subject><subject>Titanium</subject><subject>Type II supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd3jwE9Wpc0SZMeZfhjMJ2wHryFrEm2jK2pSTvxv7elohfx9PF9PO8L3wPAJUa3RFA-wYyIhBLGJ2pVaoqPwOjndAxGCCGaZIS_nYKzGLf9mub5CBTFJhiTaLc3VXS-Uju4bGsTKn9Q8Nlrs4vwNfiD0wa-mA8466j1ponQVY2HzcbARXBrV0XoLVw2Kug2NufgxKpdNBffcwyKh_ti-pTMF4-z6d08KQnPm0Qxkop0pZhJOdNCYyHYiqGSp4xxZjHPc6GtVllmS5sTmuFUUYENwoKW1JAxuBpq6-DfWxMbufVt6F6IMqUi5ywjGHcUGqgy-BiDsbIObq_Cp8RI9upk70n2nuSgrovcDBHn69_Of_DrP3BVb2WOhMRdStbaki_Xenxb</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Schulte, Jack</creator><creator>Bose, Maitrayee</creator><creator>Young, Patrick A.</creator><creator>Vance, Gregory S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7978-6370</orcidid><orcidid>https://orcid.org/0000-0002-0984-4117</orcidid><orcidid>https://orcid.org/0000-0003-1705-5991</orcidid></search><sort><creationdate>20210201</creationdate><title>Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust</title><author>Schulte, Jack ; Bose, Maitrayee ; Young, Patrick A. ; Vance, Gregory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Anomalies</topic><topic>Asteroids</topic><topic>Astrophysics</topic><topic>Calcium</topic><topic>Calcium isotopes</topic><topic>Chondrites</topic><topic>Collapse</topic><topic>Composition</topic><topic>Core-collapse supernovae</topic><topic>Ejecta</topic><topic>Fast neutrons</topic><topic>Iron 57</topic><topic>Iron isotopes</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Laboratory astrophysics</topic><topic>Meteorite composition</topic><topic>Meteorites</topic><topic>Neutrinos</topic><topic>Nickel</topic><topic>Nitrogen</topic><topic>Nitrogen isotopes</topic><topic>Shock waves</topic><topic>Silicon</topic><topic>Small solar system bodies</topic><topic>Stellar evolution</topic><topic>Stellar evolutionary models</topic><topic>Stellar winds</topic><topic>Sulfur</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Theoretical models</topic><topic>Three dimensional models</topic><topic>Titanium</topic><topic>Type II supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulte, Jack</creatorcontrib><creatorcontrib>Bose, Maitrayee</creatorcontrib><creatorcontrib>Young, Patrick A.</creatorcontrib><creatorcontrib>Vance, Gregory S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulte, Jack</au><au>Bose, Maitrayee</au><au>Young, Patrick A.</au><au>Vance, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>908</volume><issue>1</issue><spage>38</spage><pages>38-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present the isotope yields of two post-explosion, three-dimensional 15 core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of SiC stardust. We find that these core-collapse supernova models predict similar carbon and nitrogen compositions to SiC X grains and grains with 12C/13C < 20 and 14N/15N < 60, which we will hereafter refer to as SiC 'D' grains. Material from the interior of a 15 explosion reaches high enough temperatures shortly after core collapse to produce the large enrichments of 13C and 15N necessary to replicate the compositions of SiC D grains. The innermost ejecta in a core-collapse supernova is operating in the neutrino-driven regime and undergoes fast proton capture after being heated by the supernova shockwave. Both 3D models predict 0.3 Al/27Al < 1.5, comparable to the ratios seen in SiC X, C, and D grains. Models 15S and 15A, in general, predict very large anomalies in calcium isotopes but do compare qualitatively with the SiC X grain measurements that show 44Ca and 43Ca excesses. The titanium isotopic compositions of SiC X grains are well reproduced. The models predict 57Fe excesses and depletions that are observed in SiC X grains, and in addition predict accurately the 60Ni/58Ni, 61Ni/58Ni, and 62Ni/58Ni ratios in SiC X grains, as a result of fast neutron captures initiated by the propagation of the supernova shockwave. Finally, symmetry has a noticeable effect on the production of silicon, sulfur, and iron isotopes in the SN ejecta.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abcd41</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7978-6370</orcidid><orcidid>https://orcid.org/0000-0002-0984-4117</orcidid><orcidid>https://orcid.org/0000-0003-1705-5991</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-02, Vol.908 (1), p.38 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_abcd41 |
source | EZB Electronic Journals Library |
subjects | Aluminum Anomalies Asteroids Astrophysics Calcium Calcium isotopes Chondrites Collapse Composition Core-collapse supernovae Ejecta Fast neutrons Iron 57 Iron isotopes Isotope composition Isotopes Laboratory astrophysics Meteorite composition Meteorites Neutrinos Nickel Nitrogen Nitrogen isotopes Shock waves Silicon Small solar system bodies Stellar evolution Stellar evolutionary models Stellar winds Sulfur Supernova Supernovae Theoretical models Three dimensional models Titanium Type II supernovae |
title | Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20Supernova%20Models%20Provide%20New%20Insights%20into%20the%20Origins%20of%20Stardust&rft.jtitle=The%20Astrophysical%20journal&rft.au=Schulte,%20Jack&rft.date=2021-02-01&rft.volume=908&rft.issue=1&rft.spage=38&rft.pages=38-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abcd41&rft_dat=%3Cproquest_iop_j%3E2489756311%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-a53282ba5e275d8d1885b50c725575f17998dfda66fcf934612a481e0184c4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489756311&rft_id=info:pmid/&rfr_iscdi=true |