Loading…
The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources
We perform a systematic study of the 56 Ni mass ( M Ni ) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates M Ni for SESNe by a factor of ∼2. Recently, Khatami & Kasen presented a new model relating the peak time...
Saved in:
Published in: | The Astrophysical journal 2021-09, Vol.918 (2), p.89 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3 |
container_end_page | |
container_issue | 2 |
container_start_page | 89 |
container_title | The Astrophysical journal |
container_volume | 918 |
creator | Afsariardchi, Niloufar Drout, Maria R. Khatami, David K. Matzner, Christopher D. Moon, Dae-Sik Ni, Yuan Qi |
description | We perform a systematic study of the
56
Ni mass (
M
Ni
) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates
M
Ni
for SESNe by a factor of ∼2. Recently, Khatami & Kasen presented a new model relating the peak time (
t
p
) and luminosity (
L
p
) of a radioactively powered supernova to its
M
Ni
that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter,
β
. Using observed
t
p
,
L
p
, and tail-measured
M
Ni
values for 27 SESNe, we observationally calibrate
β
for the first time. Despite scatter, we demonstrate that the model of Khatami & Kasen with empirically calibrated
β
values provides significantly improved measurements of
M
Ni
when only photospheric data are available. However, these observationally constrained
β
values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex)
L
p
for a given
M
Ni
. While effects due to composition, mixing, and asymmetry can increase
L
p
none can explain the systematically low
β
values. However, the discrepancy can be alleviated if ∼7%–50% of
L
p
for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the
M
Ni
values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms. |
doi_str_mv | 10.3847/1538-4357/ac0aeb |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac0aeb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574788455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFb3LgfcGjuPTCZxV-qrUB_QCu6GyeRGU9POOJNU_PcmRHTl6nIu3zkcDkKnlFzwNJYTKngaxVzIiTZEQ76HRr-vfTQihMRRwuXLIToKYd1LlmUj9Lp6A_xQmXeo8b0OAV9VofFV3jaV3WJb4mWnnIMigu0OausAL1sHfmt3Gi7xfOPqyugeDri0Hk-LouqVrvGT_QSPl7b1BsIxOih1HeDk547R8831anYXLR5v57PpIjIxTZooKaGUWSKKvDDAJANhWBpTnsmM55xTzWhKUm4SMIVgMqdUFCQmMgfNDO-QMTobcp23Hy2ERq27Al2doJiQsUzTWIiOIgNlvA3BQ6mcrzbafylKVD-n6rdT_XZqmLOznA-Wyrq_zH_xbxyBeCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574788455</pqid></control><display><type>article</type><title>The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources</title><source>EZB Electronic Journals Library</source><creator>Afsariardchi, Niloufar ; Drout, Maria R. ; Khatami, David K. ; Matzner, Christopher D. ; Moon, Dae-Sik ; Ni, Yuan Qi</creator><creatorcontrib>Afsariardchi, Niloufar ; Drout, Maria R. ; Khatami, David K. ; Matzner, Christopher D. ; Moon, Dae-Sik ; Ni, Yuan Qi</creatorcontrib><description>We perform a systematic study of the
56
Ni mass (
M
Ni
) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates
M
Ni
for SESNe by a factor of ∼2. Recently, Khatami & Kasen presented a new model relating the peak time (
t
p
) and luminosity (
L
p
) of a radioactively powered supernova to its
M
Ni
that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter,
β
. Using observed
t
p
,
L
p
, and tail-measured
M
Ni
values for 27 SESNe, we observationally calibrate
β
for the first time. Despite scatter, we demonstrate that the model of Khatami & Kasen with empirically calibrated
β
values provides significantly improved measurements of
M
Ni
when only photospheric data are available. However, these observationally constrained
β
values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex)
L
p
for a given
M
Ni
. While effects due to composition, mixing, and asymmetry can increase
L
p
none can explain the systematically low
β
values. However, the discrepancy can be alleviated if ∼7%–50% of
L
p
for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the
M
Ni
values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac0aeb</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Composition effects ; Core-collapse supernovae ; Hydrogen ; Luminosity ; Magnetars ; Mass distribution ; Mathematical models ; Modelling ; Nickel ; Numerical simulations ; Photosphere ; Power sources ; Progenitors (astrophysics) ; Radioactive decay ; Shock cooling ; Supernova ; Supernovae</subject><ispartof>The Astrophysical journal, 2021-09, Vol.918 (2), p.89</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3</citedby><cites>FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3</cites><orcidid>0000-0003-3656-5268 ; 0000-0002-1338-490X ; 0000-0003-4200-5064 ; 0000-0001-7081-0082 ; 0000-0003-4307-0589 ; 0000-0001-9732-2281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Afsariardchi, Niloufar</creatorcontrib><creatorcontrib>Drout, Maria R.</creatorcontrib><creatorcontrib>Khatami, David K.</creatorcontrib><creatorcontrib>Matzner, Christopher D.</creatorcontrib><creatorcontrib>Moon, Dae-Sik</creatorcontrib><creatorcontrib>Ni, Yuan Qi</creatorcontrib><title>The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We perform a systematic study of the
56
Ni mass (
M
Ni
) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates
M
Ni
for SESNe by a factor of ∼2. Recently, Khatami & Kasen presented a new model relating the peak time (
t
p
) and luminosity (
L
p
) of a radioactively powered supernova to its
M
Ni
that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter,
β
. Using observed
t
p
,
L
p
, and tail-measured
M
Ni
values for 27 SESNe, we observationally calibrate
β
for the first time. Despite scatter, we demonstrate that the model of Khatami & Kasen with empirically calibrated
β
values provides significantly improved measurements of
M
Ni
when only photospheric data are available. However, these observationally constrained
β
values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex)
L
p
for a given
M
Ni
. While effects due to composition, mixing, and asymmetry can increase
L
p
none can explain the systematically low
β
values. However, the discrepancy can be alleviated if ∼7%–50% of
L
p
for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the
M
Ni
values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms.</description><subject>Astrophysics</subject><subject>Composition effects</subject><subject>Core-collapse supernovae</subject><subject>Hydrogen</subject><subject>Luminosity</subject><subject>Magnetars</subject><subject>Mass distribution</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nickel</subject><subject>Numerical simulations</subject><subject>Photosphere</subject><subject>Power sources</subject><subject>Progenitors (astrophysics)</subject><subject>Radioactive decay</subject><subject>Shock cooling</subject><subject>Supernova</subject><subject>Supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFb3LgfcGjuPTCZxV-qrUB_QCu6GyeRGU9POOJNU_PcmRHTl6nIu3zkcDkKnlFzwNJYTKngaxVzIiTZEQ76HRr-vfTQihMRRwuXLIToKYd1LlmUj9Lp6A_xQmXeo8b0OAV9VofFV3jaV3WJb4mWnnIMigu0OausAL1sHfmt3Gi7xfOPqyugeDri0Hk-LouqVrvGT_QSPl7b1BsIxOih1HeDk547R8831anYXLR5v57PpIjIxTZooKaGUWSKKvDDAJANhWBpTnsmM55xTzWhKUm4SMIVgMqdUFCQmMgfNDO-QMTobcp23Hy2ERq27Al2doJiQsUzTWIiOIgNlvA3BQ6mcrzbafylKVD-n6rdT_XZqmLOznA-Wyrq_zH_xbxyBeCU</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Afsariardchi, Niloufar</creator><creator>Drout, Maria R.</creator><creator>Khatami, David K.</creator><creator>Matzner, Christopher D.</creator><creator>Moon, Dae-Sik</creator><creator>Ni, Yuan Qi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3656-5268</orcidid><orcidid>https://orcid.org/0000-0002-1338-490X</orcidid><orcidid>https://orcid.org/0000-0003-4200-5064</orcidid><orcidid>https://orcid.org/0000-0001-7081-0082</orcidid><orcidid>https://orcid.org/0000-0003-4307-0589</orcidid><orcidid>https://orcid.org/0000-0001-9732-2281</orcidid></search><sort><creationdate>20210901</creationdate><title>The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources</title><author>Afsariardchi, Niloufar ; Drout, Maria R. ; Khatami, David K. ; Matzner, Christopher D. ; Moon, Dae-Sik ; Ni, Yuan Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Composition effects</topic><topic>Core-collapse supernovae</topic><topic>Hydrogen</topic><topic>Luminosity</topic><topic>Magnetars</topic><topic>Mass distribution</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nickel</topic><topic>Numerical simulations</topic><topic>Photosphere</topic><topic>Power sources</topic><topic>Progenitors (astrophysics)</topic><topic>Radioactive decay</topic><topic>Shock cooling</topic><topic>Supernova</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afsariardchi, Niloufar</creatorcontrib><creatorcontrib>Drout, Maria R.</creatorcontrib><creatorcontrib>Khatami, David K.</creatorcontrib><creatorcontrib>Matzner, Christopher D.</creatorcontrib><creatorcontrib>Moon, Dae-Sik</creatorcontrib><creatorcontrib>Ni, Yuan Qi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afsariardchi, Niloufar</au><au>Drout, Maria R.</au><au>Khatami, David K.</au><au>Matzner, Christopher D.</au><au>Moon, Dae-Sik</au><au>Ni, Yuan Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>918</volume><issue>2</issue><spage>89</spage><pages>89-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We perform a systematic study of the
56
Ni mass (
M
Ni
) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates
M
Ni
for SESNe by a factor of ∼2. Recently, Khatami & Kasen presented a new model relating the peak time (
t
p
) and luminosity (
L
p
) of a radioactively powered supernova to its
M
Ni
that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter,
β
. Using observed
t
p
,
L
p
, and tail-measured
M
Ni
values for 27 SESNe, we observationally calibrate
β
for the first time. Despite scatter, we demonstrate that the model of Khatami & Kasen with empirically calibrated
β
values provides significantly improved measurements of
M
Ni
when only photospheric data are available. However, these observationally constrained
β
values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex)
L
p
for a given
M
Ni
. While effects due to composition, mixing, and asymmetry can increase
L
p
none can explain the systematically low
β
values. However, the discrepancy can be alleviated if ∼7%–50% of
L
p
for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the
M
Ni
values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac0aeb</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3656-5268</orcidid><orcidid>https://orcid.org/0000-0002-1338-490X</orcidid><orcidid>https://orcid.org/0000-0003-4200-5064</orcidid><orcidid>https://orcid.org/0000-0001-7081-0082</orcidid><orcidid>https://orcid.org/0000-0003-4307-0589</orcidid><orcidid>https://orcid.org/0000-0001-9732-2281</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-09, Vol.918 (2), p.89 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ac0aeb |
source | EZB Electronic Journals Library |
subjects | Astrophysics Composition effects Core-collapse supernovae Hydrogen Luminosity Magnetars Mass distribution Mathematical models Modelling Nickel Numerical simulations Photosphere Power sources Progenitors (astrophysics) Radioactive decay Shock cooling Supernova Supernovae |
title | The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nickel%20Mass%20Distribution%20of%20Stripped-envelope%20Supernovae:%20Implications%20for%20Additional%20Power%20Sources&rft.jtitle=The%20Astrophysical%20journal&rft.au=Afsariardchi,%20Niloufar&rft.date=2021-09-01&rft.volume=918&rft.issue=2&rft.spage=89&rft.pages=89-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac0aeb&rft_dat=%3Cproquest_iop_j%3E2574788455%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574788455&rft_id=info:pmid/&rfr_iscdi=true |