Loading…

The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources

We perform a systematic study of the 56 Ni mass ( M Ni ) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates M Ni for SESNe by a factor of ∼2. Recently, Khatami & Kasen presented a new model relating the peak time...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2021-09, Vol.918 (2), p.89
Main Authors: Afsariardchi, Niloufar, Drout, Maria R., Khatami, David K., Matzner, Christopher D., Moon, Dae-Sik, Ni, Yuan Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3
cites cdi_FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3
container_end_page
container_issue 2
container_start_page 89
container_title The Astrophysical journal
container_volume 918
creator Afsariardchi, Niloufar
Drout, Maria R.
Khatami, David K.
Matzner, Christopher D.
Moon, Dae-Sik
Ni, Yuan Qi
description We perform a systematic study of the 56 Ni mass ( M Ni ) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates M Ni for SESNe by a factor of ∼2. Recently, Khatami & Kasen presented a new model relating the peak time ( t p ) and luminosity ( L p ) of a radioactively powered supernova to its M Ni that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter, β . Using observed t p , L p , and tail-measured M Ni values for 27 SESNe, we observationally calibrate β for the first time. Despite scatter, we demonstrate that the model of Khatami & Kasen with empirically calibrated β values provides significantly improved measurements of M Ni when only photospheric data are available. However, these observationally constrained β values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex) L p for a given M Ni . While effects due to composition, mixing, and asymmetry can increase L p none can explain the systematically low β values. However, the discrepancy can be alleviated if ∼7%–50% of L p for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the M Ni values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms.
doi_str_mv 10.3847/1538-4357/ac0aeb
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac0aeb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574788455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFb3LgfcGjuPTCZxV-qrUB_QCu6GyeRGU9POOJNU_PcmRHTl6nIu3zkcDkKnlFzwNJYTKngaxVzIiTZEQ76HRr-vfTQihMRRwuXLIToKYd1LlmUj9Lp6A_xQmXeo8b0OAV9VofFV3jaV3WJb4mWnnIMigu0OausAL1sHfmt3Gi7xfOPqyugeDri0Hk-LouqVrvGT_QSPl7b1BsIxOih1HeDk547R8831anYXLR5v57PpIjIxTZooKaGUWSKKvDDAJANhWBpTnsmM55xTzWhKUm4SMIVgMqdUFCQmMgfNDO-QMTobcp23Hy2ERq27Al2doJiQsUzTWIiOIgNlvA3BQ6mcrzbafylKVD-n6rdT_XZqmLOznA-Wyrq_zH_xbxyBeCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574788455</pqid></control><display><type>article</type><title>The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources</title><source>EZB Electronic Journals Library</source><creator>Afsariardchi, Niloufar ; Drout, Maria R. ; Khatami, David K. ; Matzner, Christopher D. ; Moon, Dae-Sik ; Ni, Yuan Qi</creator><creatorcontrib>Afsariardchi, Niloufar ; Drout, Maria R. ; Khatami, David K. ; Matzner, Christopher D. ; Moon, Dae-Sik ; Ni, Yuan Qi</creatorcontrib><description>We perform a systematic study of the 56 Ni mass ( M Ni ) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates M Ni for SESNe by a factor of ∼2. Recently, Khatami &amp; Kasen presented a new model relating the peak time ( t p ) and luminosity ( L p ) of a radioactively powered supernova to its M Ni that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter, β . Using observed t p , L p , and tail-measured M Ni values for 27 SESNe, we observationally calibrate β for the first time. Despite scatter, we demonstrate that the model of Khatami &amp; Kasen with empirically calibrated β values provides significantly improved measurements of M Ni when only photospheric data are available. However, these observationally constrained β values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex) L p for a given M Ni . While effects due to composition, mixing, and asymmetry can increase L p none can explain the systematically low β values. However, the discrepancy can be alleviated if ∼7%–50% of L p for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the M Ni values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac0aeb</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Composition effects ; Core-collapse supernovae ; Hydrogen ; Luminosity ; Magnetars ; Mass distribution ; Mathematical models ; Modelling ; Nickel ; Numerical simulations ; Photosphere ; Power sources ; Progenitors (astrophysics) ; Radioactive decay ; Shock cooling ; Supernova ; Supernovae</subject><ispartof>The Astrophysical journal, 2021-09, Vol.918 (2), p.89</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3</citedby><cites>FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3</cites><orcidid>0000-0003-3656-5268 ; 0000-0002-1338-490X ; 0000-0003-4200-5064 ; 0000-0001-7081-0082 ; 0000-0003-4307-0589 ; 0000-0001-9732-2281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Afsariardchi, Niloufar</creatorcontrib><creatorcontrib>Drout, Maria R.</creatorcontrib><creatorcontrib>Khatami, David K.</creatorcontrib><creatorcontrib>Matzner, Christopher D.</creatorcontrib><creatorcontrib>Moon, Dae-Sik</creatorcontrib><creatorcontrib>Ni, Yuan Qi</creatorcontrib><title>The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We perform a systematic study of the 56 Ni mass ( M Ni ) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates M Ni for SESNe by a factor of ∼2. Recently, Khatami &amp; Kasen presented a new model relating the peak time ( t p ) and luminosity ( L p ) of a radioactively powered supernova to its M Ni that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter, β . Using observed t p , L p , and tail-measured M Ni values for 27 SESNe, we observationally calibrate β for the first time. Despite scatter, we demonstrate that the model of Khatami &amp; Kasen with empirically calibrated β values provides significantly improved measurements of M Ni when only photospheric data are available. However, these observationally constrained β values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex) L p for a given M Ni . While effects due to composition, mixing, and asymmetry can increase L p none can explain the systematically low β values. However, the discrepancy can be alleviated if ∼7%–50% of L p for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the M Ni values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms.</description><subject>Astrophysics</subject><subject>Composition effects</subject><subject>Core-collapse supernovae</subject><subject>Hydrogen</subject><subject>Luminosity</subject><subject>Magnetars</subject><subject>Mass distribution</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nickel</subject><subject>Numerical simulations</subject><subject>Photosphere</subject><subject>Power sources</subject><subject>Progenitors (astrophysics)</subject><subject>Radioactive decay</subject><subject>Shock cooling</subject><subject>Supernova</subject><subject>Supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFb3LgfcGjuPTCZxV-qrUB_QCu6GyeRGU9POOJNU_PcmRHTl6nIu3zkcDkKnlFzwNJYTKngaxVzIiTZEQ76HRr-vfTQihMRRwuXLIToKYd1LlmUj9Lp6A_xQmXeo8b0OAV9VofFV3jaV3WJb4mWnnIMigu0OausAL1sHfmt3Gi7xfOPqyugeDri0Hk-LouqVrvGT_QSPl7b1BsIxOih1HeDk547R8831anYXLR5v57PpIjIxTZooKaGUWSKKvDDAJANhWBpTnsmM55xTzWhKUm4SMIVgMqdUFCQmMgfNDO-QMTobcp23Hy2ERq27Al2doJiQsUzTWIiOIgNlvA3BQ6mcrzbafylKVD-n6rdT_XZqmLOznA-Wyrq_zH_xbxyBeCU</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Afsariardchi, Niloufar</creator><creator>Drout, Maria R.</creator><creator>Khatami, David K.</creator><creator>Matzner, Christopher D.</creator><creator>Moon, Dae-Sik</creator><creator>Ni, Yuan Qi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3656-5268</orcidid><orcidid>https://orcid.org/0000-0002-1338-490X</orcidid><orcidid>https://orcid.org/0000-0003-4200-5064</orcidid><orcidid>https://orcid.org/0000-0001-7081-0082</orcidid><orcidid>https://orcid.org/0000-0003-4307-0589</orcidid><orcidid>https://orcid.org/0000-0001-9732-2281</orcidid></search><sort><creationdate>20210901</creationdate><title>The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources</title><author>Afsariardchi, Niloufar ; Drout, Maria R. ; Khatami, David K. ; Matzner, Christopher D. ; Moon, Dae-Sik ; Ni, Yuan Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Composition effects</topic><topic>Core-collapse supernovae</topic><topic>Hydrogen</topic><topic>Luminosity</topic><topic>Magnetars</topic><topic>Mass distribution</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nickel</topic><topic>Numerical simulations</topic><topic>Photosphere</topic><topic>Power sources</topic><topic>Progenitors (astrophysics)</topic><topic>Radioactive decay</topic><topic>Shock cooling</topic><topic>Supernova</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afsariardchi, Niloufar</creatorcontrib><creatorcontrib>Drout, Maria R.</creatorcontrib><creatorcontrib>Khatami, David K.</creatorcontrib><creatorcontrib>Matzner, Christopher D.</creatorcontrib><creatorcontrib>Moon, Dae-Sik</creatorcontrib><creatorcontrib>Ni, Yuan Qi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afsariardchi, Niloufar</au><au>Drout, Maria R.</au><au>Khatami, David K.</au><au>Matzner, Christopher D.</au><au>Moon, Dae-Sik</au><au>Ni, Yuan Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>918</volume><issue>2</issue><spage>89</spage><pages>89-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We perform a systematic study of the 56 Ni mass ( M Ni ) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates M Ni for SESNe by a factor of ∼2. Recently, Khatami &amp; Kasen presented a new model relating the peak time ( t p ) and luminosity ( L p ) of a radioactively powered supernova to its M Ni that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter, β . Using observed t p , L p , and tail-measured M Ni values for 27 SESNe, we observationally calibrate β for the first time. Despite scatter, we demonstrate that the model of Khatami &amp; Kasen with empirically calibrated β values provides significantly improved measurements of M Ni when only photospheric data are available. However, these observationally constrained β values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex) L p for a given M Ni . While effects due to composition, mixing, and asymmetry can increase L p none can explain the systematically low β values. However, the discrepancy can be alleviated if ∼7%–50% of L p for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the M Ni values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac0aeb</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3656-5268</orcidid><orcidid>https://orcid.org/0000-0002-1338-490X</orcidid><orcidid>https://orcid.org/0000-0003-4200-5064</orcidid><orcidid>https://orcid.org/0000-0001-7081-0082</orcidid><orcidid>https://orcid.org/0000-0003-4307-0589</orcidid><orcidid>https://orcid.org/0000-0001-9732-2281</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-09, Vol.918 (2), p.89
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ac0aeb
source EZB Electronic Journals Library
subjects Astrophysics
Composition effects
Core-collapse supernovae
Hydrogen
Luminosity
Magnetars
Mass distribution
Mathematical models
Modelling
Nickel
Numerical simulations
Photosphere
Power sources
Progenitors (astrophysics)
Radioactive decay
Shock cooling
Supernova
Supernovae
title The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nickel%20Mass%20Distribution%20of%20Stripped-envelope%20Supernovae:%20Implications%20for%20Additional%20Power%20Sources&rft.jtitle=The%20Astrophysical%20journal&rft.au=Afsariardchi,%20Niloufar&rft.date=2021-09-01&rft.volume=918&rft.issue=2&rft.spage=89&rft.pages=89-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac0aeb&rft_dat=%3Cproquest_iop_j%3E2574788455%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-6fef7965dbdce272e5c284139793b331a218083c6ecd527b115d0407bea2c33b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574788455&rft_id=info:pmid/&rfr_iscdi=true