Loading…
Excitation and Damping of Slow Magnetosonic Waves in Flaring Hot Coronal Loops: Effects of Compressive Viscosity
Slow magnetosonic waves associated with flares were observed in coronal loops by Solar and Heliospheric Observatory/Solar Ultraviolet Measurements of Emitted Radiation, Solar Dynamics Observatory/Atmospheric Imaging Assembly in various EUV bandpasses, and other instruments. The excitation and dampin...
Saved in:
Published in: | The Astrophysical journal 2022-02, Vol.926 (1), p.64 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Slow magnetosonic waves associated with flares were observed in coronal loops by Solar and Heliospheric Observatory/Solar Ultraviolet Measurements of Emitted Radiation, Solar Dynamics Observatory/Atmospheric Imaging Assembly in various EUV bandpasses, and other instruments. The excitation and damping of slow magnetosonic waves provides information on the magnetic, temperature, and density structure of the loops. Recently, it was found using 1.5D models that the thermal conduction is suppressed and compressive viscosity is enhanced in hot (
T
> 6 MK) flaring coronal loops. We model the excitation and dissipation of slow magnetosonic waves in hot coronal loops with realistic magnetic geometry, enhanced density, and temperature (compared to background corona) guided by EUV observations using a 3D magnetohydrodynamic (MHD) visco-resistive model. The effects of the compressive viscosity tensor component along the magnetic field are included with classical and enhanced viscosity coefficient values for the first time in a 3D MHD coronal loop model. The waves are excited by a velocity pulse at the footpoint of the loop at the coronal lower boundary. The modeling results demonstrate the excitation of the slow magnetosonic waves and nonlinear coupling to other wave modes, such as the kink and fast magnetosonic. We find significant leakage of the waves from the hot coronal loops with a small effect of viscous dissipation in cooler (6 MK) loops, and more significant effects of viscous dissipation in hotter (10.5 MK) coronal loops. Our results demonstrate that nonlinear 3D MHD models are required to fully account for the various wave couplings, damping, standing wave formation, and viscous dissipation in hot flaring coronal loops. Our viscous 3D MHD code provides a new tool for improved coronal seismology. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ac4090 |