Loading…
MHD Turbulent Power Anisotropy in the Inner Heliosphere
We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method...
Saved in:
Published in: | The Astrophysical journal 2022-07, Vol.933 (1), p.56 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c280t-e860e96609463f320c895cb586b19453d951bda3c14683028910d78db68e4f103 |
---|---|
cites | cdi_FETCH-LOGICAL-c280t-e860e96609463f320c895cb586b19453d951bda3c14683028910d78db68e4f103 |
container_end_page | |
container_issue | 1 |
container_start_page | 56 |
container_title | The Astrophysical journal |
container_volume | 933 |
creator | Adhikari, L. Zank, G. P. Zhao, L.-L. Telloni, D. |
description | We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method (M2) that decomposes a fluctuating vector into parallel and perpendicular fluctuating vectors. M1 and M2 calculate the transverse and parallel turbulence components relative to the mean magnetic field direction. The parallel turbulence component is regarded as compressible turbulence, and the transverse turbulence component as incompressible turbulence, which can be either Alfvénic or 2D. The transverse turbulence energy is calculated from M1 and M2, and the transverse correlation length from M2. We obtain the 2D and slab turbulence energy and the corresponding correlation lengths from those transverse turbulence components that satisfy an angle between the mean solar wind flow speed and mean magnetic field
θ
UB
of either (i) 65° <
θ
UB
< 115° or (ii) 0° <
θ
UB
< 25° (155° <
θ
UB
< 180°), respectively. We find that the 2D turbulence component is not typically observed by PSP near perihelion, but the 2D component dominates turbulence in the inner heliosphere. We compare the detailed theoretical results of a nearly incompressible MHD turbulence transport model with the observed results of PSP and SolO measurements, finding good agreement between them. |
doi_str_mv | 10.3847/1538-4357/ac70cb |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac70cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684612595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-e860e96609463f320c895cb586b19453d951bda3c14683028910d78db68e4f103</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRMFbvHgNejX2b_T6W-pFCRQ8VvC3JZkNTYjbuJkj_exMievL0mGFmHvwQusZwRyQVS8yITChhYpkbAaY4QdGvdYoiAKAJJ-L9HF2EcJhkqlSExHN2H-8GXwyNbfv41X1ZH6_aOrjeu-4Y123c7228advRz2xTu9DtrbeX6KzKm2Cvfu4CvT0-7NZZsn152qxX28SkEvrESg5WcQ6KclKRFIxUzBRM8gIrykipGC7KnBhMuSSQSoWhFLIsuLS0wkAW6Gbe7bz7HGzo9cENvh1f6pRLynHKFBtTMKeMdyF4W-nO1x-5P2oMesKjJxZ6YqFnPGPldq7Urvvb_Df-DcbhZCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684612595</pqid></control><display><type>article</type><title>MHD Turbulent Power Anisotropy in the Inner Heliosphere</title><source>EZB Free E-Journals</source><creator>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Telloni, D.</creator><creatorcontrib>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Telloni, D.</creatorcontrib><description><![CDATA[We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method (M2) that decomposes a fluctuating vector into parallel and perpendicular fluctuating vectors. M1 and M2 calculate the transverse and parallel turbulence components relative to the mean magnetic field direction. The parallel turbulence component is regarded as compressible turbulence, and the transverse turbulence component as incompressible turbulence, which can be either Alfvénic or 2D. The transverse turbulence energy is calculated from M1 and M2, and the transverse correlation length from M2. We obtain the 2D and slab turbulence energy and the corresponding correlation lengths from those transverse turbulence components that satisfy an angle between the mean solar wind flow speed and mean magnetic field
θ
UB
of either (i) 65° <
θ
UB
< 115° or (ii) 0° <
θ
UB
< 25° (155° <
θ
UB
< 180°), respectively. We find that the 2D turbulence component is not typically observed by PSP near perihelion, but the 2D component dominates turbulence in the inner heliosphere. We compare the detailed theoretical results of a nearly incompressible MHD turbulence transport model with the observed results of PSP and SolO measurements, finding good agreement between them.]]></description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac70cb</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Anisotropy ; Astrophysics ; Compressibility ; Correlation ; Fluid flow ; Heliosphere ; Interplanetary turbulence ; Magnetic fields ; Magnetohydrodynamic turbulence ; Perihelions ; Slow solar wind ; Solar magnetic field ; Solar Orbiter (ESA) ; Solar orbits ; Solar probes ; Solar wind ; Solar wind flow ; Turbulence ; Turbulent flow ; Wind flow</subject><ispartof>The Astrophysical journal, 2022-07, Vol.933 (1), p.56</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-e860e96609463f320c895cb586b19453d951bda3c14683028910d78db68e4f103</citedby><cites>FETCH-LOGICAL-c280t-e860e96609463f320c895cb586b19453d951bda3c14683028910d78db68e4f103</cites><orcidid>0000-0002-4299-0490 ; 0000-0002-4642-6192 ; 0000-0003-1549-5256 ; 0000-0002-6710-8142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><title>MHD Turbulent Power Anisotropy in the Inner Heliosphere</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description><![CDATA[We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method (M2) that decomposes a fluctuating vector into parallel and perpendicular fluctuating vectors. M1 and M2 calculate the transverse and parallel turbulence components relative to the mean magnetic field direction. The parallel turbulence component is regarded as compressible turbulence, and the transverse turbulence component as incompressible turbulence, which can be either Alfvénic or 2D. The transverse turbulence energy is calculated from M1 and M2, and the transverse correlation length from M2. We obtain the 2D and slab turbulence energy and the corresponding correlation lengths from those transverse turbulence components that satisfy an angle between the mean solar wind flow speed and mean magnetic field
θ
UB
of either (i) 65° <
θ
UB
< 115° or (ii) 0° <
θ
UB
< 25° (155° <
θ
UB
< 180°), respectively. We find that the 2D turbulence component is not typically observed by PSP near perihelion, but the 2D component dominates turbulence in the inner heliosphere. We compare the detailed theoretical results of a nearly incompressible MHD turbulence transport model with the observed results of PSP and SolO measurements, finding good agreement between them.]]></description><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Compressibility</subject><subject>Correlation</subject><subject>Fluid flow</subject><subject>Heliosphere</subject><subject>Interplanetary turbulence</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Perihelions</subject><subject>Slow solar wind</subject><subject>Solar magnetic field</subject><subject>Solar Orbiter (ESA)</subject><subject>Solar orbits</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Solar wind flow</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Wind flow</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AUxBdRMFbvHgNejX2b_T6W-pFCRQ8VvC3JZkNTYjbuJkj_exMievL0mGFmHvwQusZwRyQVS8yITChhYpkbAaY4QdGvdYoiAKAJJ-L9HF2EcJhkqlSExHN2H-8GXwyNbfv41X1ZH6_aOrjeu-4Y123c7228advRz2xTu9DtrbeX6KzKm2Cvfu4CvT0-7NZZsn152qxX28SkEvrESg5WcQ6KclKRFIxUzBRM8gIrykipGC7KnBhMuSSQSoWhFLIsuLS0wkAW6Gbe7bz7HGzo9cENvh1f6pRLynHKFBtTMKeMdyF4W-nO1x-5P2oMesKjJxZ6YqFnPGPldq7Urvvb_Df-DcbhZCE</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Adhikari, L.</creator><creator>Zank, G. P.</creator><creator>Zhao, L.-L.</creator><creator>Telloni, D.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-6710-8142</orcidid></search><sort><creationdate>20220701</creationdate><title>MHD Turbulent Power Anisotropy in the Inner Heliosphere</title><author>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Telloni, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-e860e96609463f320c895cb586b19453d951bda3c14683028910d78db68e4f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Compressibility</topic><topic>Correlation</topic><topic>Fluid flow</topic><topic>Heliosphere</topic><topic>Interplanetary turbulence</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Perihelions</topic><topic>Slow solar wind</topic><topic>Solar magnetic field</topic><topic>Solar Orbiter (ESA)</topic><topic>Solar orbits</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Solar wind flow</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Wind flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, L.</au><au>Zank, G. P.</au><au>Zhao, L.-L.</au><au>Telloni, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MHD Turbulent Power Anisotropy in the Inner Heliosphere</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>933</volume><issue>1</issue><spage>56</spage><pages>56-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract><![CDATA[We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method (M2) that decomposes a fluctuating vector into parallel and perpendicular fluctuating vectors. M1 and M2 calculate the transverse and parallel turbulence components relative to the mean magnetic field direction. The parallel turbulence component is regarded as compressible turbulence, and the transverse turbulence component as incompressible turbulence, which can be either Alfvénic or 2D. The transverse turbulence energy is calculated from M1 and M2, and the transverse correlation length from M2. We obtain the 2D and slab turbulence energy and the corresponding correlation lengths from those transverse turbulence components that satisfy an angle between the mean solar wind flow speed and mean magnetic field
θ
UB
of either (i) 65° <
θ
UB
< 115° or (ii) 0° <
θ
UB
< 25° (155° <
θ
UB
< 180°), respectively. We find that the 2D turbulence component is not typically observed by PSP near perihelion, but the 2D component dominates turbulence in the inner heliosphere. We compare the detailed theoretical results of a nearly incompressible MHD turbulence transport model with the observed results of PSP and SolO measurements, finding good agreement between them.]]></abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac70cb</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-6710-8142</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-07, Vol.933 (1), p.56 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ac70cb |
source | EZB Free E-Journals |
subjects | Anisotropy Astrophysics Compressibility Correlation Fluid flow Heliosphere Interplanetary turbulence Magnetic fields Magnetohydrodynamic turbulence Perihelions Slow solar wind Solar magnetic field Solar Orbiter (ESA) Solar orbits Solar probes Solar wind Solar wind flow Turbulence Turbulent flow Wind flow |
title | MHD Turbulent Power Anisotropy in the Inner Heliosphere |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MHD%20Turbulent%20Power%20Anisotropy%20in%20the%20Inner%20Heliosphere&rft.jtitle=The%20Astrophysical%20journal&rft.au=Adhikari,%20L.&rft.date=2022-07-01&rft.volume=933&rft.issue=1&rft.spage=56&rft.pages=56-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac70cb&rft_dat=%3Cproquest_iop_j%3E2684612595%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-e860e96609463f320c895cb586b19453d951bda3c14683028910d78db68e4f103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2684612595&rft_id=info:pmid/&rfr_iscdi=true |