Loading…
Measuring the Orbit Drift of Near-Earth Asteroids by the Yarkovsky Effect
The Yarkovsky effect causes the semimajor axis drift of near-Earth asteroids. The drift can be detected by a precise orbit determination process. Using the proposed algorithm, 2233 out of 27,078 near-Earth asteroids are chosen as the initial candidates. Out of these initial candidates, 769 have a me...
Saved in:
Published in: | The Astrophysical journal 2023-06, Vol.950 (1), p.50 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Yarkovsky effect causes the semimajor axis drift of near-Earth asteroids. The drift can be detected by a precise orbit determination process. Using the proposed algorithm, 2233 out of 27,078 near-Earth asteroids are chosen as the initial candidates. Out of these initial candidates, 769 have a measurable Yarkovsky effect with a signal-to-noise ratio (S/N) larger than 1, and 166 have a measurable Yarkovsky effect with an S/N larger than 3. The ratio between retrograde and prograde near-Earth asteroids is plotted with respect to their size. An average ratio of 2 is found for asteroids with an absolute magnitude between 14 and 21. The measurement work is carried out based on orbit determination software developed by the authors that considers a high-precision dynamical model. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/accc81 |