Loading…

GRB Afterglows with Energy Injections in AGN Accretion Disks

Active galactic nucleus (AGN) disks are widely considered potential hosts for various high-energy transients, including gamma-ray bursts (GRBs). The reactivation of GRB central engines can provide additional energy to shocks formed during the interaction of the initially ejected GRB jets with the ci...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2024-05, Vol.967 (1), p.67
Main Authors: Huang, Bao-Quan, Liu, Tong, Li, Xiao-Yan, Wei, Yun-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Active galactic nucleus (AGN) disks are widely considered potential hosts for various high-energy transients, including gamma-ray bursts (GRBs). The reactivation of GRB central engines can provide additional energy to shocks formed during the interaction of the initially ejected GRB jets with the circumburst material, commonly referred to as energy injections. In this paper, we study GRBs occurring in AGN disks within the context of energy injections. We adopt the standard external forward shock (EFS) model and consider both short- and long-duration GRB scenarios. Light curves for two types of radiation, namely, the radiation from the heated disk material (RHDM) and GRB afterglows, are computed. We find that the energy injection facilitates the EFS to break out from the photosphere of the low-density AGN disk at relativistic velocity. Moreover, the energy injection almost does not affect the RHDM but significantly enhances the peak flux of the GRB afterglows.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ad3d54