Loading…
Stellar Occultation by the Resonant Trans-Neptunian Object (523764) 2014 WC510 Reveals a Close Binary TNO
We report on the stellar occultation by (523764) 2014 WC510 observed on 2018 December 1 UT. This occultation campaign was part of the Research and Education Collaborative Occultation Network (RECON), a network of small telescopes spread over 2000 km in western USA and Canada. Light curves from six s...
Saved in:
Published in: | The planetary science journal 2020-09, Vol.1 (2), p.48 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the stellar occultation by (523764) 2014 WC510 observed on 2018 December 1 UT. This occultation campaign was part of the Research and Education Collaborative Occultation Network (RECON), a network of small telescopes spread over 2000 km in western USA and Canada. Light curves from six stations revealed three groups of two or more consecutive flux drops correlated in time between adjacent stations. A Bayesian model comparison reveals that a model with a double object occulting a double star is favored over alternative models considered. For the statistically favored model, we determined that the primary component of the object has a diameter dp = 181 16 km and the secondary ds = 138 32 km, assuming identical geometric albedo between the two components. The two components have a projected separation of 349 26 km. Adopting an absolute magnitude for the system of HV = 7.2 from the Minor Planet Center, we derive a geometric albedo of pV = 5.1% 1.7%. This is the smallest resonant object with an occultation size measurement and with a detected secondary from a ground-based stellar occultation, filling a region of the size versus separation parameter space of binary objects that is largely unexplored. The results show the capabilities of the unique design of the RECON experiment sensitive to small objects and close binaries. 2014 WC510 is presently at a low galactic latitude where the high surface density of stars will provide good occultation opportunities in the upcoming years. |
---|---|
ISSN: | 2632-3338 2632-3338 |
DOI: | 10.3847/PSJ/abb23d |