Loading…

Near-IR Spectral Observations of the Didymos System: Daily Evolution Before and After the DART Impact Indicates that Dimorphos Originated from Didymos

Ejecta from Dimorphos following the DART mission impact significantly increased the brightness of the Didymos–Dimorphos system, allowing us to examine subsurface material. We report daily near-IR spectroscopic observations of the Didymos system using NASA’s IRTF that follow the evolution of the spec...

Full description

Saved in:
Bibliographic Details
Published in:The planetary science journal 2023-12, Vol.4 (12), p.229
Main Authors: Polishook, David, DeMeo, Francesca E., Burt, Brian J., Thomas, Cristina A., Rivkin, Andrew S., Sanchez, Juan A., Reddy, Vishnu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ejecta from Dimorphos following the DART mission impact significantly increased the brightness of the Didymos–Dimorphos system, allowing us to examine subsurface material. We report daily near-IR spectroscopic observations of the Didymos system using NASA’s IRTF that follow the evolution of the spectral signature of the ejecta cloud over 1 week, from 1 day before the impact. Overall, the spectral features remained fixed (S-type classification) while the ejecta dissipated, confirming that both Didymos and Dimorphos are constructed from the same silicate material. This novel result strongly supports binary asteroid formation models that include the breaking up of a single body due to rotational breakup of kilometer-wide bodies. At impact time +14 and +38 hr, the spectral slope decreased, but the following nights presented an increasing spectral slope that almost returned to the preimpact slope. However, the parameters of the 1 μ m band remained fixed, and no “fresh”/Q-type-like spectrum was measured. We interpret this as follows. (1) The ejecta cloud is the main contributor (60%–70%) to the overall light during the ∼40 hr after impact. (2) Coarser debris (≥100 μ m) dominated the ejecta cloud, decreasing the spectral slope (after radiation pressure removed the fine grains ≤10 hr after impact). (3) After approximately 1 week, the ejecta cloud dispersed enough to make the fine grains on Didymos’s surface the dominant part of the light, increasing the spectral slope to the preimpact level. (4) A negligible amount of nonweathered material was ejected from Dimorphos’s subsurface, suggesting that Dimorphos was accumulated from weathered material ejected from Didymos’s surface.
ISSN:2632-3338
2632-3338
DOI:10.3847/PSJ/ad08ae