Loading…
Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents
A bulk heterojunction organic solar cell with poly(3-hexylthiophene) (P3HT) as the donor and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor is deposited using blade coating on a hot plate at 80 °C with hot air of 70 °C applied from above. In contrast to the 30 min of conventional...
Saved in:
Published in: | Japanese Journal of Applied Physics 2014-06, Vol.53 (6), p.62301-1-062301-5 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A bulk heterojunction organic solar cell with poly(3-hexylthiophene) (P3HT) as the donor and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor is deposited using blade coating on a hot plate at 80 °C with hot air of 70 °C applied from above. In contrast to the 30 min of conventional dichlorobenzene solvent annealing, the rapid-drying blade coating forms a dry film in 1 s. The fabrication throughput is substantially enhanced. The blade-coated film has a smoother surface roughness of 3.5 nm compared with 10.5 nm for solvent annealing; however, the desired phase separation in the 50 nm scale forms despite the rapid drying. A single layer solar cell exhibits power conversion efficiency of 4.1% with blade coating in chlorobenzene, which is the same as solvent annealing device. A multilayer device with carrier blocking layers fabricated entirely of the less toxic toluene also exhibits efficiency of 4.1%. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.53.062301 |