Loading…

Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models

We have computed the gravitational wave signal from supernova core collapse by using the most realistic input physics available at present. We start from state-of-the-art progenitor models of rotating and nonrotating massive stars and simulate the dynamics of their core collapse by integrating the e...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2004-03, Vol.603 (1), p.221-230
Main Authors: Müller, Ewald, Rampp, Markus, Buras, Robert, Janka, H.-Thomas, Shoemaker, David H
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-406301ab9ab3fe5a00ccb2896663fe6abd3f684f85df61977245b6d970f8f4d53
cites cdi_FETCH-LOGICAL-c446t-406301ab9ab3fe5a00ccb2896663fe6abd3f684f85df61977245b6d970f8f4d53
container_end_page 230
container_issue 1
container_start_page 221
container_title The Astrophysical journal
container_volume 603
creator Müller, Ewald
Rampp, Markus
Buras, Robert
Janka, H.-Thomas
Shoemaker, David H
description We have computed the gravitational wave signal from supernova core collapse by using the most realistic input physics available at present. We start from state-of-the-art progenitor models of rotating and nonrotating massive stars and simulate the dynamics of their core collapse by integrating the equations of axisymmetric hydrodynamics, together with the Boltzmann equation for the neutrino transport, including an elaborate description of neutrino interactions, and a realistic equation of state. Using the Einstein quadrupole formula we compute the quadrupole wave amplitudes, the Fourier wave spectra, the amount of energy radiated in the form of gravitational waves, and the signal-to-noise ratios for the Laser Interferometer Gravitational-Wave Observatory (LIGO) I and the tuned Advanced LIGO (LIGO II) interferometers resulting from both nonradial mass motion and anisotropic neutrino emission. The simulations demonstrate that the dominant contribution to the gravitational wave signal is produced by neutrino-driven convection behind the supernova shock. For stellar cores rotating at the extreme of current stellar evolution predictions, the core bounce signal is detectable (S/N > ~ 7) with LIGO II for a supernova up to a distance of [approx]5 kpc, whereas the signal from postshock convection is observable (S/N > ~ 7) with LIGO II up to a distance of [approx]100 kpc and with LIGO I to a distance of [approx]5 kpc. If the core is nonrotating, its gravitational wave emission can be measured with LIGO II up to a distance of [approx]15 kpc (S/N > ~ 8), while the signal from the Ledoux convection in the deleptonizing nascent neutron star can be detected up to a distance of [approx]10 kpc (S/N > ~ 8). Both kinds of signals are generically produced by convection in any core-collapse supernova.
doi_str_mv 10.1086/381360
format article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_iop_primary_10_1086_381360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17688947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-406301ab9ab3fe5a00ccb2896663fe6abd3f684f85df61977245b6d970f8f4d53</originalsourceid><addsrcrecordid>eNp90N9LwzAQB_AgCs6pf0N9ERGqSfP7UcqcwmSgE30LaZtIpFtq0k38702ZKCj4dHfwueP4AnCM4AWCgl1igTCDO2CEKBY5wZTvghGEkOQM8-d9cBDj6zAWUo7AfOHfdWiyadAb1-ve-ZVusye9MdmDe0l9zGzwy-ze6NbF3tVZ6YPJS9-2uosJrTsTVn6jszvfmDYegj2blszRVx2Dx-vJorzJZ_PpbXk1y2tCWJ8TyDBEupK6wtZQDWFdV4WQjLE0M1012DJBrKCNZUhyXhBasUZyaIUlDcVjcLa92wX_tjaxV0sXa5O-Whm_jgoJTgUluGCJnv5PORNCEv4D6-BjDMaqLrilDh8KQTVEq7bRJni-hc5332aIVA0JqyQUUkWBVNfYhE_-4l8HPwFZyIHf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17688947</pqid></control><display><type>article</type><title>Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models</title><source>EZB Electronic Journals Library</source><creator>Müller, Ewald ; Rampp, Markus ; Buras, Robert ; Janka, H.-Thomas ; Shoemaker, David H</creator><creatorcontrib>Müller, Ewald ; Rampp, Markus ; Buras, Robert ; Janka, H.-Thomas ; Shoemaker, David H</creatorcontrib><description>We have computed the gravitational wave signal from supernova core collapse by using the most realistic input physics available at present. We start from state-of-the-art progenitor models of rotating and nonrotating massive stars and simulate the dynamics of their core collapse by integrating the equations of axisymmetric hydrodynamics, together with the Boltzmann equation for the neutrino transport, including an elaborate description of neutrino interactions, and a realistic equation of state. Using the Einstein quadrupole formula we compute the quadrupole wave amplitudes, the Fourier wave spectra, the amount of energy radiated in the form of gravitational waves, and the signal-to-noise ratios for the Laser Interferometer Gravitational-Wave Observatory (LIGO) I and the tuned Advanced LIGO (LIGO II) interferometers resulting from both nonradial mass motion and anisotropic neutrino emission. The simulations demonstrate that the dominant contribution to the gravitational wave signal is produced by neutrino-driven convection behind the supernova shock. For stellar cores rotating at the extreme of current stellar evolution predictions, the core bounce signal is detectable (S/N &gt; ~ 7) with LIGO II for a supernova up to a distance of [approx]5 kpc, whereas the signal from postshock convection is observable (S/N &gt; ~ 7) with LIGO II up to a distance of [approx]100 kpc and with LIGO I to a distance of [approx]5 kpc. If the core is nonrotating, its gravitational wave emission can be measured with LIGO II up to a distance of [approx]15 kpc (S/N &gt; ~ 8), while the signal from the Ledoux convection in the deleptonizing nascent neutron star can be detected up to a distance of [approx]10 kpc (S/N &gt; ~ 8). Both kinds of signals are generically produced by convection in any core-collapse supernova.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/381360</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>The Astrophysical journal, 2004-03, Vol.603 (1), p.221-230</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-406301ab9ab3fe5a00ccb2896663fe6abd3f684f85df61977245b6d970f8f4d53</citedby><cites>FETCH-LOGICAL-c446t-406301ab9ab3fe5a00ccb2896663fe6abd3f684f85df61977245b6d970f8f4d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Müller, Ewald</creatorcontrib><creatorcontrib>Rampp, Markus</creatorcontrib><creatorcontrib>Buras, Robert</creatorcontrib><creatorcontrib>Janka, H.-Thomas</creatorcontrib><creatorcontrib>Shoemaker, David H</creatorcontrib><title>Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models</title><title>The Astrophysical journal</title><description>We have computed the gravitational wave signal from supernova core collapse by using the most realistic input physics available at present. We start from state-of-the-art progenitor models of rotating and nonrotating massive stars and simulate the dynamics of their core collapse by integrating the equations of axisymmetric hydrodynamics, together with the Boltzmann equation for the neutrino transport, including an elaborate description of neutrino interactions, and a realistic equation of state. Using the Einstein quadrupole formula we compute the quadrupole wave amplitudes, the Fourier wave spectra, the amount of energy radiated in the form of gravitational waves, and the signal-to-noise ratios for the Laser Interferometer Gravitational-Wave Observatory (LIGO) I and the tuned Advanced LIGO (LIGO II) interferometers resulting from both nonradial mass motion and anisotropic neutrino emission. The simulations demonstrate that the dominant contribution to the gravitational wave signal is produced by neutrino-driven convection behind the supernova shock. For stellar cores rotating at the extreme of current stellar evolution predictions, the core bounce signal is detectable (S/N &gt; ~ 7) with LIGO II for a supernova up to a distance of [approx]5 kpc, whereas the signal from postshock convection is observable (S/N &gt; ~ 7) with LIGO II up to a distance of [approx]100 kpc and with LIGO I to a distance of [approx]5 kpc. If the core is nonrotating, its gravitational wave emission can be measured with LIGO II up to a distance of [approx]15 kpc (S/N &gt; ~ 8), while the signal from the Ledoux convection in the deleptonizing nascent neutron star can be detected up to a distance of [approx]10 kpc (S/N &gt; ~ 8). Both kinds of signals are generically produced by convection in any core-collapse supernova.</description><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp90N9LwzAQB_AgCs6pf0N9ERGqSfP7UcqcwmSgE30LaZtIpFtq0k38702ZKCj4dHfwueP4AnCM4AWCgl1igTCDO2CEKBY5wZTvghGEkOQM8-d9cBDj6zAWUo7AfOHfdWiyadAb1-ve-ZVusye9MdmDe0l9zGzwy-ze6NbF3tVZ6YPJS9-2uosJrTsTVn6jszvfmDYegj2blszRVx2Dx-vJorzJZ_PpbXk1y2tCWJ8TyDBEupK6wtZQDWFdV4WQjLE0M1012DJBrKCNZUhyXhBasUZyaIUlDcVjcLa92wX_tjaxV0sXa5O-Whm_jgoJTgUluGCJnv5PORNCEv4D6-BjDMaqLrilDh8KQTVEq7bRJni-hc5332aIVA0JqyQUUkWBVNfYhE_-4l8HPwFZyIHf</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Müller, Ewald</creator><creator>Rampp, Markus</creator><creator>Buras, Robert</creator><creator>Janka, H.-Thomas</creator><creator>Shoemaker, David H</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20040301</creationdate><title>Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models</title><author>Müller, Ewald ; Rampp, Markus ; Buras, Robert ; Janka, H.-Thomas ; Shoemaker, David H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-406301ab9ab3fe5a00ccb2896663fe6abd3f684f85df61977245b6d970f8f4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Ewald</creatorcontrib><creatorcontrib>Rampp, Markus</creatorcontrib><creatorcontrib>Buras, Robert</creatorcontrib><creatorcontrib>Janka, H.-Thomas</creatorcontrib><creatorcontrib>Shoemaker, David H</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Ewald</au><au>Rampp, Markus</au><au>Buras, Robert</au><au>Janka, H.-Thomas</au><au>Shoemaker, David H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models</atitle><jtitle>The Astrophysical journal</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>603</volume><issue>1</issue><spage>221</spage><epage>230</epage><pages>221-230</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We have computed the gravitational wave signal from supernova core collapse by using the most realistic input physics available at present. We start from state-of-the-art progenitor models of rotating and nonrotating massive stars and simulate the dynamics of their core collapse by integrating the equations of axisymmetric hydrodynamics, together with the Boltzmann equation for the neutrino transport, including an elaborate description of neutrino interactions, and a realistic equation of state. Using the Einstein quadrupole formula we compute the quadrupole wave amplitudes, the Fourier wave spectra, the amount of energy radiated in the form of gravitational waves, and the signal-to-noise ratios for the Laser Interferometer Gravitational-Wave Observatory (LIGO) I and the tuned Advanced LIGO (LIGO II) interferometers resulting from both nonradial mass motion and anisotropic neutrino emission. The simulations demonstrate that the dominant contribution to the gravitational wave signal is produced by neutrino-driven convection behind the supernova shock. For stellar cores rotating at the extreme of current stellar evolution predictions, the core bounce signal is detectable (S/N &gt; ~ 7) with LIGO II for a supernova up to a distance of [approx]5 kpc, whereas the signal from postshock convection is observable (S/N &gt; ~ 7) with LIGO II up to a distance of [approx]100 kpc and with LIGO I to a distance of [approx]5 kpc. If the core is nonrotating, its gravitational wave emission can be measured with LIGO II up to a distance of [approx]15 kpc (S/N &gt; ~ 8), while the signal from the Ledoux convection in the deleptonizing nascent neutron star can be detected up to a distance of [approx]10 kpc (S/N &gt; ~ 8). Both kinds of signals are generically produced by convection in any core-collapse supernova.</abstract><pub>IOP Publishing</pub><doi>10.1086/381360</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2004-03, Vol.603 (1), p.221-230
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_primary_10_1086_381360
source EZB Electronic Journals Library
title Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Gravitational%20Wave%20Signals%20from%20Realistic%20Core-Collapse%20Supernova%20Models&rft.jtitle=The%20Astrophysical%20journal&rft.au=M%C3%BCller,%20Ewald&rft.date=2004-03-01&rft.volume=603&rft.issue=1&rft.spage=221&rft.epage=230&rft.pages=221-230&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1086/381360&rft_dat=%3Cproquest_iop_p%3E17688947%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-406301ab9ab3fe5a00ccb2896663fe6abd3f684f85df61977245b6d970f8f4d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17688947&rft_id=info:pmid/&rfr_iscdi=true