Loading…

Kinetic Behavior of Exchange-Driven Growth with Catalyzed-Birth Processes

Two catalyzed-birth models of n-species (n ≥ 2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Ak^m and Af^m of the same species with the rate kernels Km(k,j)= Kmkj (m = 1, 2,... ,n, n ≥ 2), and ag...

Full description

Saved in:
Bibliographic Details
Published in:Communications in theoretical physics 2006-12, Vol.46 (6), p.1113-1120, Article 1113
Main Author: WANG Hai-Feng LIN Zhen-Quan KONG Xiang-Mu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two catalyzed-birth models of n-species (n ≥ 2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Ak^m and Af^m of the same species with the rate kernels Km(k,j)= Kmkj (m = 1, 2,... ,n, n ≥ 2), and aggregates of A^n species catalyze a monomer-birth of A^l species (l = 1, 2 , n - 1) with the catalysis rate kernel Jl(k,j) -Jlkj^v. The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution ak^l(t) of A^l species depends crucially on the value of the catalysis rate parameter v: (i) ak^l(t) obeys the conventional scaling law in the case of v ≤ 0, (ii) ak^l(t) satisfies a modified scaling form in the case of v 〉 0. In the second model, the mechanism of monomer-birth of An-species catalyzed by A^l species is added on the basis of the first model, that is, the aggregates of A^l and A^n species catalyze each other to cause monomer-birth. The kinetic behaviors of A^l and A^n species are found to fall into two categories for the different v: (i) growth obeying conventional scaling form with v ≤ 0, (ii) gelling at finite time with v 〉 0.
ISSN:0253-6102
DOI:10.1088/0253-6102/46/6/029