Loading…
A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability
A modified Lattice-Boltzmann method is proposed by considering the Klinkenberg effect and adsorbability-desorbability for the purpose of simulating methane gas seepage in fissured coal. The results show that the Klinkenberg effect has a little influence on methane gas seepage in fissured coal, so it...
Saved in:
Published in: | Chinese physics letters 2010, Vol.27 (1), p.174-177 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A modified Lattice-Boltzmann method is proposed by considering the Klinkenberg effect and adsorbability-desorbability for the purpose of simulating methane gas seepage in fissured coal. The results show that the Klinkenberg effect has a little influence on methane gas seepage in fissured coal, so it can be neglected in engineering computations for simplicity. If both the Klinkenberg effect and the adsorbability-desorbability are considered, the Klinkenberg influence on gas pressure decreases as the Darcy coefficient increases. It is found by gas drainage simulations that near a drainage hole, the effect of adsorption and desorption cannot be neglected, and the location of the drainage hole has a great influence on drainage efficient λ when the hole is just located at the mid-zone of the coal seam, λ is 0.691808; when the hole is excursion down to 1.0m from the mid-zone of coal seam, λ decreases to 0.668631; when the hole is excursion up or down to 2.0m from the mid-zone of coal seam, λ decreases to 0.632917. The simulations supply an effective approach for optimizing the gas drainage hole location. |
---|---|
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/27/1/014701 |