Loading…
A Compton scattering study on the Hume-Rothery mechanism of AlCu–TM (TM: transition metal) quasicrystals
The electron momentum distributions in icosahedral Al64Cu23Fe13, icosahedral Al63Cu23Ru13 and decagonal Al65Cu15Co20 quasicrystals have been studied using the high-resolution Compton scattering technique. The electron-per-atom ratios (e/a) of the quasicrystals were determined quantitatively for the...
Saved in:
Published in: | Journal of physics. Condensed matter 2006-08, Vol.18 (31), p.7203-7208 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electron momentum distributions in icosahedral Al64Cu23Fe13, icosahedral Al63Cu23Ru13 and decagonal Al65Cu15Co20 quasicrystals have been studied using the high-resolution Compton scattering technique. The electron-per-atom ratios (e/a) of the quasicrystals were determined quantitatively for the first time from the Compton profiles. The radii of the Fermi spheres were evaluated from the values of e/a on the basis of the free-electron model. Comparisons between the radius of the Fermi spheres and the size of the quasi-Brillouin zones show that the icosahedral quasicrystals meet the empirical matching condition, while the decagonal quasicrystal does not do this so well. This implies that the Hume-Rothery mechanism works for the formation of the pseudogap near the Fermi level in the icosahedral quasicrystals, although it operates only slightly in the decagonal quasicrystal. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/18/31/015 |