Loading…

Supra- and nanocrystallinities: a new scientific adventure

Nanomaterials exist in the interstellar medium, in biology, in art and also metallurgy. Assemblies of nanomaterials were observed in the early solar system as well as silicate particle opals. The latter exhibits unusual optical properties directly dependent on particle ordering in 3D superlattices.T...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2011-12, Vol.23 (50), p.503102-8
Main Author: Pileni, M P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanomaterials exist in the interstellar medium, in biology, in art and also metallurgy. Assemblies of nanomaterials were observed in the early solar system as well as silicate particle opals. The latter exhibits unusual optical properties directly dependent on particle ordering in 3D superlattices.The optical properties of noble metal nanoparticles (Ag, Au and Cu) change with the ordering of atoms in the nanocrystals, called nanocrystallinity. The vibrational properties related to nanocrystallinity markedly differ with the vibrational modes studied. Hence, a drastic effect on nanocrystallinity is observed on the confined acoustic vibrational property of the fundamental quadrupolar modes whereas the breathing acoustic modes remain quasi-unchanged. The mechanical properties characterized by the Young's modulus of multiply twinned particle (MTP) films are markedly lower than those of single nanocrystals.Two fcc supracrystal growth mechanisms, supported by simulation, of Au nanocrystals are proposed: heterogeneous and homogeneous growth processes. The final morphology of nanocrystal assemblies, with either films by layer-by-layer growth characterized by their plastic deformation or well-defined shapes grown in solution, depends on the solvent used to disperse the nanocrystals before the evaporation process.At thermodynamic equilibrium, two simultaneous supracrystal growth processes of Au nanocrystals take place in solution and at the air-liquid interface. These growth processes are rationalized by simulation. They involve, on the one hand, van der Waals interactions and, on the other hand, the attractive interaction between nanocrystals and the interface.Ag nanocrystals (5 nm) self-order in colloidal crystals with various arrangements called supracrystallinities. As in bulk materials, phase diagrams of supracrystals with structural transitions from face-centered-cubic (fcc) to hexagonal-close-packed (hcp) and body-centered-cubic (bcc) structures are observed. They depend on the chain length of the coating agent and on the solvent used to disperse the nanocrystals before evaporation. The transition from fcc to hcp is attributed to specific stacking processes depending on evaporation kinetics whereas the formation of bcc supracrystals is attributed to van der Waals attractions.These results open up a new research area, which currently suffers from an extensive lack of knowledge.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/23/50/503102