Loading…

Wavelet transform-based methods for denoising of Coulter counter signals

A process based on discrete wavelet transforms is developed for denoising and baseline correction of measured signals from Coulter counters. Given signals from a particular Coulter counting experiment, which detect passage of particles through a fluid-filled microchannel, the process uses a cross-va...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2008-06, Vol.19 (6), p.065102-065102 (15)
Main Authors: Jagtiani, Ashish V, Sawant, Rupesh, Carletta, Joan, Zhe, Jiang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A process based on discrete wavelet transforms is developed for denoising and baseline correction of measured signals from Coulter counters. Given signals from a particular Coulter counting experiment, which detect passage of particles through a fluid-filled microchannel, the process uses a cross-validation procedure to pick appropriate parameters for signal denoising; these parameters include the choice of the particular wavelet, the number of levels of decomposition, the threshold value and the threshold strategy. The process is demonstrated on simulated and experimental single channel data obtained from a particular multi-channel Coulter counter processing. For these example experimental signals from 20 mum polymethacrylate and Cottonwood/Eastern Deltoid pollen particles and the simulated signals, denoising is aimed at removing Gaussian white noise, 60 Hz power line interference and low frequency baseline drift. The process can be easily adapted for other Coulter counters and other sources of noise. Overall, wavelets are presented as a tool to aid in accurate detection of particles in Coulter counters.
ISSN:0957-0233
1361-6501
DOI:10.1088/0957-0233/19/6/065102