Loading…
Quantum transport properties of ultrathin silver nanowires
The quantum transport properties of ultrathin silver nanowires are investigated. For a perfect crystalline nanowire with four atoms per unit cell, three conduction channels are found, corresponding to three s bands crossing the Fermi level. One conductance channel is disrupted by a single-atom defec...
Saved in:
Published in: | Nanotechnology 2003-05, Vol.14 (5), p.501-504 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quantum transport properties of ultrathin silver nanowires are investigated. For a perfect crystalline nanowire with four atoms per unit cell, three conduction channels are found, corresponding to three s bands crossing the Fermi level. One conductance channel is disrupted by a single-atom defect, either adding or removing one atom. The quantum interference effect leads to oscillation of conductance versus the inter-defect distance. In the presence of a multiple-atom defect, one conduction channel remains robust at the Fermi level regardless the details of defect configuration. The histogram of conductance calculated for a finite nanowire (seven atoms per cross section) with a large number of random defect configurations agrees well with recent experiments. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/14/5/304 |