Loading…

Development of porous silicon-based miniature fuel cells

Nowadays the rise in portable electronics requires energy sources compatible with the environmental constraints. We demonstrate, in this paper, how microfabrication techniques allow the development of low-cost miniature fuel cells fully integrated on silicon. Contrary to usual proton-conducting memb...

Full description

Saved in:
Bibliographic Details
Published in:Journal of micromechanics and microengineering 2005-09, Vol.15 (9), p.S179-S184
Main Authors: Pichonat, Tristan, Gauthier-Manuel, Bernard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nowadays the rise in portable electronics requires energy sources compatible with the environmental constraints. We demonstrate, in this paper, how microfabrication techniques allow the development of low-cost miniature fuel cells fully integrated on silicon. Contrary to usual proton-conducting membranes made of ionomers ensuring the proton conductivity of proton-exchange membrane fuel cells (PEMFCs), we present here another way to proceed. It consists in the chemical grafting of molecules bearing acid groups on the pore walls of a porous silicon membrane to mimic the structure of an ionomer, such as NafionRG. We obtain an inorganic, dimensionally stable, proton-conducting membrane with many optimizable parameters such as the pore size and the pore structure of the membrane or the nature of the grafted molecules. Moreover, the use of a silicon substrate offers advantages of serial and parallel integration, the possibility of encapsulation by wafer bonding and gas feed and electrical contacts may be included into the membrane etching process, thanks to simple KOH wet etching processes and metal sputtering.
ISSN:0960-1317
1361-6439
DOI:10.1088/0960-1317/15/9/S02