Loading…
Rectangular shape distributed piezoelectric actuator: analytical analysis
This paper is focused on the development of distributed piezoelectric actuators (DPAs) with rectangular shapes by using PZT materials. Analytical models of rectangular shape DPAs have been constructed in order to analyse and test the performance of DPA products. Firstly, based on the theory of elect...
Saved in:
Published in: | Smart materials and structures 2004-04, Vol.13 (2), p.337-349 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is focused on the development of distributed piezoelectric actuators (DPAs) with rectangular shapes by using PZT materials. Analytical models of rectangular shape DPAs have been constructed in order to analyse and test the performance of DPA products. Firstly, based on the theory of electromagnetics, DPAs have been considered as a type of capacitor. The charge distributed density on the interdigitated electrodes (IDEs), which has been applied in the actuators, and the capacitance of the DPAs have been calculated. The accurate distribution and intensity of electrical field in DPA element have also been calculated completely. Secondly, based on the piezoelectric constitutive relations and the compound plates theory, models for mechanical strain and stress fields of DPAs have been developed, and the performances of rectangular shape DPAs have been discussed. Finally, on the basis of the models that have been developed in this paper, an improved design of a rectangular shape DPA has been discussed and summed up. Due to the minimum hypotheses that have been used during the processes of calculation, the characteristics of this paper are that the accurate distribution and intensity of electrical fields in DPAs have been concluded. The proposed accurate calculations have not been seen in the literature, and can be used in DPA design and manufacture processes in order to improve mechanical performance and reduce the cost of DPA products in further applications. In this paper, all the processes of analysis and calculation have been done by MATLAB and MathCAD. The FEM results used for comparison were obtained using the ABAQUS program. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/0964-1726/13/2/012 |