Loading…

Lasing behaviour from the condensation of polaronic excitons in a ZnO nanowire

Atoms under optical and magnetic trapping in a limited space at a very low temperature can lead to Bose-Einstein condensation (BEC), even in a one-dimensional (1D) optical lattice. However, can the confinment of dense excitons in a 1D semiconductor microstructure easily reach the excitonic BEC? A li...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2011-04, Vol.20 (4), p.421-429
Main Author: 刘瑞斌 邹炳锁
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atoms under optical and magnetic trapping in a limited space at a very low temperature can lead to Bose-Einstein condensation (BEC), even in a one-dimensional (1D) optical lattice. However, can the confinment of dense excitons in a 1D semiconductor microstructure easily reach the excitonic BEC? A lightly Mn(II)-doped ZnO nanowire under a femtosecond laser pulse pump at room temperature produces single-mode lasing from coherent bipolaronic excitons, which is much like a macroscopic quantum state due to the condensation of the bipoaronic excitons if not real BEC. In this process, longitudinal biphonon binding with the exciton plays an important role. We revisit this system and propose possibility of bipolaronic exciton condensation. More studies are needed for this condensation phenomenon in 1D microcavity systems.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/4/047104