Loading…

New applications of the H-reversal trajectory using solar sails

Advanced solar sailing has been an increasingly attractive propulsion system for highly non-Keplerian orbits.Three new applications of the orbital angular momentum reversal(H-reversal) trajectories using solar sails are presented:space observation,heliocentric orbit transfer and collision orbits wit...

Full description

Saved in:
Bibliographic Details
Published in:Research in astronomy and astrophysics 2011-07, Vol.11 (7), p.863-878
Main Authors: Zeng, Xiang-Yuan, Baoyin, Hexi, Li, Jun-Feng, Gong, Sheng-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Advanced solar sailing has been an increasingly attractive propulsion system for highly non-Keplerian orbits.Three new applications of the orbital angular momentum reversal(H-reversal) trajectories using solar sails are presented:space observation,heliocentric orbit transfer and collision orbits with asteroids.A theoretical proof for the existence of double H-reversal trajectories(referred to as‘H2RTs’) is given,and the characteristics of the H2RTs are introduced before a discussion of the mission applications.A new family of H2RTs was obtained using a 3D dynamic model of the two-body frame.In a time-optimal control model,the minimum period H2RTs both inside and outside the ecliptic plane were examined using an ideal solar sail.Due to the quasi-heliostationary property at its two symmetrical aphelia,the H2RTs were deemed suitable for space observation.For the second application,the heliocentric transfer orbit was able to function as the time-optimal H-reversal trajectory,since its perihelion velocity is a circular or elliptic velocity.Such a transfer orbit can place the sailcraft into a clockwise orbit in the ecliptic plane,with a high inclination or displacement above or below the Sun.The third application of the H-reversal trajectory was simulated impacting an asteroid passing near Earth in a head-on collision.The collision point can be designed through selecting different perihelia or different launch windows.Sample orbits of each application were presented through numerical simulation.The results can serve as a reference for theoretical research and engineering design.
ISSN:1674-4527
2397-6209
DOI:10.1088/1674-4527/11/7/011