Loading…
Searches on neutrino physics with cryogenic detectors
The impact in neutrino physics of the recent results on oscillations and the consequent need to measure the value of the neutrino mass are briefly discussed. The operating principle of cryogenic detectors working at low temperatures, where the small heat capacity allows to record and measure the tem...
Saved in:
Published in: | Journal of physics. Conference series 2009-06, Vol.173 (1), p.012004 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The impact in neutrino physics of the recent results on oscillations and the consequent need to measure the value of the neutrino mass are briefly discussed. The operating principle of cryogenic detectors working at low temperatures, where the small heat capacity allows to record and measure the temperature increase due to the tiny energy lost by a particle in form of heat is described. An application of these detectors is the measurement, or at least an upper constraint, of the neutrino mass in β decay. This approach is complementary and can be in the future competitive with experiments based on the spectrometric measurement of the electron energy. The presently running bolometric CUORICINO experiment searching for neutrinoless double beta decay of 130Te already yields the best constraint on the absolute value of the Majorana neutrino mass. An experiment, named CUORE, for Cryogenic Underground Observatory for Rare Events, is presently in construction. With its active mass of 750 kg of natural TeO2 it aims to reach the sensitivity in the determination of the Majorana neutrino mass suggested by the results of neutrino oscillation under the inverse hierarchy hypothesis. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/173/1/012004 |