Loading…

Preferential attachment growth model and nonextensive statistical mechanics

We introduce a two-dimensional growth model where every new site is located, at a distance r from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+\alpha_G}$ $(\alpha_G > 0)$, and is attached to (only) one pre-existing site with a probability $\propto{k}_i/r^{\al...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2005-04, Vol.70 (1), p.70-76
Main Authors: Soares, D. J. B, Tsallis, C, Mariz, A. M, Silva, L. R. da
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-2bf024f10bf82f50391733852e3a1f5761b8204274e2d8f0aebba7971faf9e4a3
cites cdi_FETCH-LOGICAL-c385t-2bf024f10bf82f50391733852e3a1f5761b8204274e2d8f0aebba7971faf9e4a3
container_end_page 76
container_issue 1
container_start_page 70
container_title Europhysics letters
container_volume 70
creator Soares, D. J. B
Tsallis, C
Mariz, A. M
Silva, L. R. da
description We introduce a two-dimensional growth model where every new site is located, at a distance r from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+\alpha_G}$ $(\alpha_G > 0)$, and is attached to (only) one pre-existing site with a probability $\propto{k}_i/r^{\alpha_A}_i$ ($\alpha_A\ge0$; ki is the number of links of the i-th site of the pre-existing graph, and ri its distance to the new site). Then we numerically determine that the probability distribution for a site to have k links is asymptotically given, for all values of $\alpha_G$, by $P(k)\propto e_q^{-k/\kappa}$, where $e_q^x\equiv[1+(1-q)x]^{1/(1-q)}$ is the function naturally emerging within nonextensive statistical mechanics. The entropic index is numerically given (at least for $\alpha_A$ not too large) by $q=1+(1/3)e^{-0.526\;\alpha_A}$, and the characteristic number of links by $\kappa\simeq0.1+0.08\,\alpha_A$. The $\alpha_A=0$ particular case belongs to the same universality class to which the Barabasi-Albert model belongs. In addition to this, we have numerically studied the rate at which the average number of links $\langle k_i\rangle$ increases with the scaled time $t/i$; asymptotically, $\langle{k_i}\rangle\propto(t/i)^{\beta}$, the exponent being close to $\beta=\frac{1}{2}(1-\alpha_A)$ for $0\le\alpha_A\le1$, and zero otherwise. The present results reinforce the conjecture that the microscopic dynamics of nonextensive systems typically build (for instance, in Gibbs Γ-space for Hamiltonian systems) a scale-free network.
doi_str_mv 10.1209/epl/i2004-10467-y
format article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_iop_primary_10_1209_epl_i2004_10467_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29926577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-2bf024f10bf82f50391733852e3a1f5761b8204274e2d8f0aebba7971faf9e4a3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EEqXwAeyyQkIidOzYcbJEvNVSkADBznLSMQ3kRexC-_e4D7Fhw8aWx-eMNHcIOaRwShmkA2zLQcEAeEiBxzJcbJEeZUkc8kTwbdIDlopQgBS7ZM_adwBKExr3yPChQ4Md1q7QZaCd0_m08q_grWu-3TSomgn6ej0J6qbGucPaFl8YWKddYV2Re6nCfKrrIrf7ZMfo0uLB5u6T56vLp_ObcHR_fXt-NgrzKBEuZJkBxg2FzCTMCIhSKiP_wzDS1AgZ0yxhwJnkyCaJAY1ZpmUqqdEmRa6jPjla92275nOG1qmqsDmWpa6xmVnF0pTFQkoP0jWYd421flDVdkWlu4WioJaxKR-bWsWmVrGphXfCtePHw_mvoLsPFctICpXAixqOxxc8vXtVj54_2fBN-6_2x3_x5XLUcjlKelGBP9uJiX4AtJmNEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29926577</pqid></control><display><type>article</type><title>Preferential attachment growth model and nonextensive statistical mechanics</title><source>Institute of Physics</source><creator>Soares, D. J. B ; Tsallis, C ; Mariz, A. M ; Silva, L. R. da</creator><creatorcontrib>Soares, D. J. B ; Tsallis, C ; Mariz, A. M ; Silva, L. R. da</creatorcontrib><description>We introduce a two-dimensional growth model where every new site is located, at a distance r from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+\alpha_G}$ $(\alpha_G &gt; 0)$, and is attached to (only) one pre-existing site with a probability $\propto{k}_i/r^{\alpha_A}_i$ ($\alpha_A\ge0$; ki is the number of links of the i-th site of the pre-existing graph, and ri its distance to the new site). Then we numerically determine that the probability distribution for a site to have k links is asymptotically given, for all values of $\alpha_G$, by $P(k)\propto e_q^{-k/\kappa}$, where $e_q^x\equiv[1+(1-q)x]^{1/(1-q)}$ is the function naturally emerging within nonextensive statistical mechanics. The entropic index is numerically given (at least for $\alpha_A$ not too large) by $q=1+(1/3)e^{-0.526\;\alpha_A}$, and the characteristic number of links by $\kappa\simeq0.1+0.08\,\alpha_A$. The $\alpha_A=0$ particular case belongs to the same universality class to which the Barabasi-Albert model belongs. In addition to this, we have numerically studied the rate at which the average number of links $\langle k_i\rangle$ increases with the scaled time $t/i$; asymptotically, $\langle{k_i}\rangle\propto(t/i)^{\beta}$, the exponent being close to $\beta=\frac{1}{2}(1-\alpha_A)$ for $0\le\alpha_A\le1$, and zero otherwise. The present results reinforce the conjecture that the microscopic dynamics of nonextensive systems typically build (for instance, in Gibbs Γ-space for Hamiltonian systems) a scale-free network.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/epl/i2004-10467-y</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>05.70.Ln ; 89.75.-k ; 89.75.Hc</subject><ispartof>Europhysics letters, 2005-04, Vol.70 (1), p.70-76</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-2bf024f10bf82f50391733852e3a1f5761b8204274e2d8f0aebba7971faf9e4a3</citedby><cites>FETCH-LOGICAL-c385t-2bf024f10bf82f50391733852e3a1f5761b8204274e2d8f0aebba7971faf9e4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Soares, D. J. B</creatorcontrib><creatorcontrib>Tsallis, C</creatorcontrib><creatorcontrib>Mariz, A. M</creatorcontrib><creatorcontrib>Silva, L. R. da</creatorcontrib><title>Preferential attachment growth model and nonextensive statistical mechanics</title><title>Europhysics letters</title><description>We introduce a two-dimensional growth model where every new site is located, at a distance r from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+\alpha_G}$ $(\alpha_G &gt; 0)$, and is attached to (only) one pre-existing site with a probability $\propto{k}_i/r^{\alpha_A}_i$ ($\alpha_A\ge0$; ki is the number of links of the i-th site of the pre-existing graph, and ri its distance to the new site). Then we numerically determine that the probability distribution for a site to have k links is asymptotically given, for all values of $\alpha_G$, by $P(k)\propto e_q^{-k/\kappa}$, where $e_q^x\equiv[1+(1-q)x]^{1/(1-q)}$ is the function naturally emerging within nonextensive statistical mechanics. The entropic index is numerically given (at least for $\alpha_A$ not too large) by $q=1+(1/3)e^{-0.526\;\alpha_A}$, and the characteristic number of links by $\kappa\simeq0.1+0.08\,\alpha_A$. The $\alpha_A=0$ particular case belongs to the same universality class to which the Barabasi-Albert model belongs. In addition to this, we have numerically studied the rate at which the average number of links $\langle k_i\rangle$ increases with the scaled time $t/i$; asymptotically, $\langle{k_i}\rangle\propto(t/i)^{\beta}$, the exponent being close to $\beta=\frac{1}{2}(1-\alpha_A)$ for $0\le\alpha_A\le1$, and zero otherwise. The present results reinforce the conjecture that the microscopic dynamics of nonextensive systems typically build (for instance, in Gibbs Γ-space for Hamiltonian systems) a scale-free network.</description><subject>05.70.Ln</subject><subject>89.75.-k</subject><subject>89.75.Hc</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkctOwzAQRS0EEqXwAeyyQkIidOzYcbJEvNVSkADBznLSMQ3kRexC-_e4D7Fhw8aWx-eMNHcIOaRwShmkA2zLQcEAeEiBxzJcbJEeZUkc8kTwbdIDlopQgBS7ZM_adwBKExr3yPChQ4Md1q7QZaCd0_m08q_grWu-3TSomgn6ej0J6qbGucPaFl8YWKddYV2Re6nCfKrrIrf7ZMfo0uLB5u6T56vLp_ObcHR_fXt-NgrzKBEuZJkBxg2FzCTMCIhSKiP_wzDS1AgZ0yxhwJnkyCaJAY1ZpmUqqdEmRa6jPjla92275nOG1qmqsDmWpa6xmVnF0pTFQkoP0jWYd421flDVdkWlu4WioJaxKR-bWsWmVrGphXfCtePHw_mvoLsPFctICpXAixqOxxc8vXtVj54_2fBN-6_2x3_x5XLUcjlKelGBP9uJiX4AtJmNEQ</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Soares, D. J. B</creator><creator>Tsallis, C</creator><creator>Mariz, A. M</creator><creator>Silva, L. R. da</creator><general>IOP Publishing</general><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20050401</creationdate><title>Preferential attachment growth model and nonextensive statistical mechanics</title><author>Soares, D. J. B ; Tsallis, C ; Mariz, A. M ; Silva, L. R. da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-2bf024f10bf82f50391733852e3a1f5761b8204274e2d8f0aebba7971faf9e4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>05.70.Ln</topic><topic>89.75.-k</topic><topic>89.75.Hc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soares, D. J. B</creatorcontrib><creatorcontrib>Tsallis, C</creatorcontrib><creatorcontrib>Mariz, A. M</creatorcontrib><creatorcontrib>Silva, L. R. da</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soares, D. J. B</au><au>Tsallis, C</au><au>Mariz, A. M</au><au>Silva, L. R. da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferential attachment growth model and nonextensive statistical mechanics</atitle><jtitle>Europhysics letters</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>70</volume><issue>1</issue><spage>70</spage><epage>76</epage><pages>70-76</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><abstract>We introduce a two-dimensional growth model where every new site is located, at a distance r from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+\alpha_G}$ $(\alpha_G &gt; 0)$, and is attached to (only) one pre-existing site with a probability $\propto{k}_i/r^{\alpha_A}_i$ ($\alpha_A\ge0$; ki is the number of links of the i-th site of the pre-existing graph, and ri its distance to the new site). Then we numerically determine that the probability distribution for a site to have k links is asymptotically given, for all values of $\alpha_G$, by $P(k)\propto e_q^{-k/\kappa}$, where $e_q^x\equiv[1+(1-q)x]^{1/(1-q)}$ is the function naturally emerging within nonextensive statistical mechanics. The entropic index is numerically given (at least for $\alpha_A$ not too large) by $q=1+(1/3)e^{-0.526\;\alpha_A}$, and the characteristic number of links by $\kappa\simeq0.1+0.08\,\alpha_A$. The $\alpha_A=0$ particular case belongs to the same universality class to which the Barabasi-Albert model belongs. In addition to this, we have numerically studied the rate at which the average number of links $\langle k_i\rangle$ increases with the scaled time $t/i$; asymptotically, $\langle{k_i}\rangle\propto(t/i)^{\beta}$, the exponent being close to $\beta=\frac{1}{2}(1-\alpha_A)$ for $0\le\alpha_A\le1$, and zero otherwise. The present results reinforce the conjecture that the microscopic dynamics of nonextensive systems typically build (for instance, in Gibbs Γ-space for Hamiltonian systems) a scale-free network.</abstract><pub>IOP Publishing</pub><doi>10.1209/epl/i2004-10467-y</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2005-04, Vol.70 (1), p.70-76
issn 0295-5075
1286-4854
language eng
recordid cdi_iop_primary_10_1209_epl_i2004_10467_y
source Institute of Physics
subjects 05.70.Ln
89.75.-k
89.75.Hc
title Preferential attachment growth model and nonextensive statistical mechanics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferential%20attachment%20growth%20model%20and%20nonextensive%20statistical%20mechanics&rft.jtitle=Europhysics%20letters&rft.au=Soares,%20D.%20J.%20B&rft.date=2005-04-01&rft.volume=70&rft.issue=1&rft.spage=70&rft.epage=76&rft.pages=70-76&rft.issn=0295-5075&rft.eissn=1286-4854&rft_id=info:doi/10.1209/epl/i2004-10467-y&rft_dat=%3Cproquest_iop_p%3E29926577%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-2bf024f10bf82f50391733852e3a1f5761b8204274e2d8f0aebba7971faf9e4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29926577&rft_id=info:pmid/&rfr_iscdi=true