Loading…
Crack front propagation by kink formation
The fracture of a three-dimensional brittle solid generates two-dimensional surfaces, which are formed behind a one-dimensional crack front. For quasi-static cracks on a (111) cleavage plane in silicon front propagation by kink-pair formation was proposed and proven by a reaction pathway analysis wi...
Saved in:
Published in: | Europhysics letters 2009-09, Vol.87 (6), p.66004 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fracture of a three-dimensional brittle solid generates two-dimensional surfaces, which are formed behind a one-dimensional crack front. For quasi-static cracks on a (111) cleavage plane in silicon front propagation by kink-pair formation was proposed and proven by a reaction pathway analysis with Stillinger-Weber potentials. Here, we demonstrate that the kink-pair mechanism is much more general: we also observe it in molecular-dynamics simulations of a complex metallic alloy, the C15 NbCr2 Friauf-Laves phase, where we applied carefully selected embedded-atom-method potentials. The numerical experiments highlight that kink formation is essential for crack propagation in any brittle material. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/87/66004 |