Loading…
Constructing multi-target controlled phase gate in circuit QED and its applications
We present a one-step scheme in circuit quantum electrodynamics (QED) to realize multi-target controlled phase gates by using one microwave cavity that is coupled capacitively to a superconducting flux qutrit which plays the control role and simultaneously controls n target qutrits embedded in the m...
Saved in:
Published in: | Europhysics letters 2019-09, Vol.127 (5), p.50002 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a one-step scheme in circuit quantum electrodynamics (QED) to realize multi-target controlled phase gates by using one microwave cavity that is coupled capacitively to a superconducting flux qutrit which plays the control role and simultaneously controls n target qutrits embedded in the microwave cavity. A strong classical field is imposed on the control qutrit so as to yield two dressed states, one of which is coded as a logical state. The controlled phase gates can be employed to achieve the creation of entangled states deterministically without any measurement, including the Bell state, the GHZ state, and the cluster state. Numerical simulations demonstrate that the high-fidelity creation of the entangled state is feasible with the constructed controlled phase gate under the present circuit QED technology. |
---|---|
ISSN: | 0295-5075 1286-4854 1286-4854 |
DOI: | 10.1209/0295-5075/127/50002 |